PROSPER: Extracting Protocol Specifications Using Large Language Models

被引:8
作者
Sharma, Prakhar [1 ]
Yegneswaran, Vinod [1 ]
机构
[1] SRI Int, Menlo Pk, CA 94025 USA
来源
PROCEEDINGS OF THE 22ND ACM WORKSHOP ON HOT TOPICS IN NETWORKS, HOTNETS 2023 | 2023年
关键词
Large language models; request for comments; protocol specifications; protocol FSMs; automated extraction;
D O I
10.1145/3626111.3628205
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We explore the application of Large Language Models (LLMs) (specifically GPT-3.5-turbo) to extract specifications and automating understanding of networking protocols from Internet Request for Comments (RFC) documents. LLMs have proven successful in specialized domains like medical and legal text understanding, and this work investigates their potential in automatically comprehending RFCs. We develop Artifact Miner, a tool to extract diagram artifacts from RFCs. We then couple extracted artifacts with natural language text to extract protocol automata using GPT-turbo 3.5 (chatGPT) and present our zero-shot and few-shot extraction results. We call this framework for FSM extraction 'PROSPER: Protocol Specification Miner'. We compare PROSPER with existing state-of-the-art techniques for protocol FSM state and transition extraction. Our experiments indicate that employing artifacts along with text for extraction can lead to lower false positives and better accuracy for both extracted states and transitions. Finally, we discuss efficient prompt engineering techniques, the errors we encountered, and pitfalls of using LLMs for knowledge extraction from specialized domains such as RFC documents.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 50 条
[41]   InteraRec: Interactive Recommendations Using Multimodal Large Language Models [J].
Karra, Saketh Reddy ;
Tulabandhula, Theja .
TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2024 WORKSHOPS, RAFDA AND IWTA, 2024, 14658 :32-43
[42]   Explainable Integration of Knowledge Graphs Using Large Language Models [J].
Ahmed, Abdullah Fathi ;
Firmansyah, Asep Fajar ;
Sherif, Mohamed Ahmed ;
Moussallem, Diego ;
Ngomo, Axel-Cyrille Ngonga .
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2023, 2023, 13913 :124-139
[43]   Using Large Language Models to Enhance Programming Error Messages [J].
Leinonen, Juho ;
Hellas, Arto ;
Sarsa, Sami ;
Reeves, Brent ;
Denny, Paul ;
Prather, James ;
Becker, Brett A. .
PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023, 2023, :563-569
[44]   Using Large Language Models to Shape Social Robots' Speech [J].
Sevilla-Salcedo, Javier ;
Fernandez-Rodicio, Enrique ;
Martin-Galvan, Laura ;
Castro-Gonzalez, Alvaro ;
Castillo, Jose C. ;
Salichs, Miguel A. .
INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (03) :6-20
[45]   AutoIoT: Automated IoT Platform Using Large Language Models [J].
Cheng, Ye ;
Xu, Minghui ;
Zhang, Yue ;
Li, Kun ;
Wang, Ruoxi ;
Yang, Lian .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (10) :13644-13656
[46]   Diagnosing infeasible optimization problems using large language models [J].
Chen, Hao ;
Constante-Flores, Gonzalo E. ;
Li, Can .
INFOR, 2024, 62 (04) :573-587
[47]   Challenges to Using Large Language Models in Code Generation and Repair [J].
Pasquale, Liliana ;
Sabetta, Antonino ;
d'Amorim, Marcelo ;
Hegedus, Peter ;
Mirakhorli, Mehdi Tarrit ;
Okhravi, Hamed ;
Payer, Mathias ;
Rashid, Awais ;
Santos, Joanna C. S. ;
Spring, Jonathan M. ;
Tan, Lin ;
Tuma, Katja .
IEEE SECURITY & PRIVACY, 2025, 23 (02) :81-88
[48]   Prediction of Arabic Legal Rulings Using Large Language Models [J].
Ammar, Adel ;
Koubaa, Anis ;
Benjdira, Bilel ;
Nacar, Omer ;
Sibaee, Serry .
ELECTRONICS, 2024, 13 (04)
[49]   Devising and Detecting Phishing Emails Using Large Language Models [J].
Heiding, Fredrik ;
Schneier, Bruce ;
Vishwanath, Arun ;
Bernstein, Jeremy ;
Park, Peter S. .
IEEE ACCESS, 2024, 12 :42131-42146
[50]   Solving Proof Block Problems Using Large Language Models [J].
Poulsen, Seth ;
Sarsa, Sami ;
Prather, James ;
Leinonen, Juho ;
Becker, Brett A. ;
Hellas, Arto ;
Denny, Paul ;
Reeves, Brent N. .
PROCEEDINGS OF THE 55TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2024, VOL. 1, 2024, :1063-1069