On random irregular subgraphs

被引:1
作者
Fox, Jacob [1 ]
Luo, Sammy [1 ]
Pham, Huy Tuan [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
concentration; irregular subgraph; random graph; random irregular subgraphs;
D O I
10.1002/rsa.21204
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G$$ G $$ be a d$$ d $$-regular graph on n$$ n $$ vertices. Frieze, Gould, Karonski, and Pfender began the study of the following random spanning subgraph model H=H(G)$$ H=H(G) $$. Assign independently to each vertex v$$ v $$ of G$$ G $$ a uniform random number x(v)is an element of[0,1]$$ x(v)\in \left[0,1\right] $$, and an edge (u,v)$$ \left(u,v\right) $$ of G$$ G $$ is an edge of H$$ H $$ if and only if x(u)+x(v)>= 1$$ x(u)+x(v)\ge 1 $$. Addressing a problem of Alon and Wei, we prove that if d=o(n/(logn)12)$$ d=o\left(n/{\left(\log n\right)}<^>{12}\right) $$, then with high probability, for each nonnegative integer k <= d$$ k\le d $$, there are (1+o(1))n/(d+1)$$ \left(1+o(1)\right)n/\left(d+1\right) $$ vertices of degree k$$ k $$ in H$$ H $$.
引用
收藏
页码:899 / 917
页数:19
相关论文
共 9 条
[1]  
Alon N., IRREGULAR SUBGRAPHS
[2]   Hoeffding's inequality for supermartingales [J].
Fan, Xiequan ;
Grama, Ion ;
Liu, Quansheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) :3545-3559
[3]  
FAUDREE RJ, 1988, COLLOQ MATH SOC J B, V52, P247
[4]   TAIL PROBABILITIES FOR MARTINGALES [J].
FREEDMAN, DA .
ANNALS OF PROBABILITY, 1975, 3 (01) :100-118
[5]   On graph irregularity strength [J].
Frieze, A ;
Gould, RJ ;
Karonski, M ;
Pfender, F .
JOURNAL OF GRAPH THEORY, 2002, 41 (02) :120-137
[7]  
Przybylo J., ASYMPTOTIC CONFIRMAT
[8]  
Przybylo J., SHORT PROOF ASYMPTOT