Powder bed defect classification methods: deep learning vs traditional machine learning

被引:0
|
作者
Du Rand, Francois [1 ]
van der Merwe, Andre Francois [2 ]
van Tonder, Malan [2 ]
机构
[1] Vaal Univ Technol, Dept Elect Engn, Vanderbijlpark, South Africa
[2] Stellenbosch Univ, Dept Ind Engn, Stellenbosch, South Africa
关键词
Additive manufacturing; Machine learning; Defects; ANOMALY DETECTION;
D O I
10.1108/RPJ-07-2023-0243
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This paper aims to discuss the development of a defect classification system that can be used to detect and classify powder bed surface defects from captured layer images without the need for specialised computational hardware. The idea is to develop this system by making use of more traditional machine learning (ML) models instead of using computationally intensive deep learning (DL) models.Design/methodology/approach - The approach that is used by this study is to use traditional image processing and classification techniques that can be applied to captured layer images to detect and classify defects without the need for DL algorithms.Findings - The study proved that a defect classification algorithm could be developed by making use of traditional ML models with a high degree of accuracy and the images could be processed at higher speeds than typically reported in literature when making use of DL models.Originality/value - This paper addresses a need that has been identified for a high-speed defect classification algorithm that can detect and classify defects without the need for specialised hardware that is typically used when making use of DL technologies. This is because when developing closed-loop feedback systems for these additive manufacturing machines, it is important to detect and classify defects without inducing additional delays to the control system.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [41] Pneumonia Image Classification: Deep Learning and Machine Learning Fusion
    Tang, Jiarui
    Zhang, Bohua
    Liu, Jinzhou
    Dong, Zhuoling
    Zhou, Yangbin
    Meng, Xingyu
    Toe, Teoh Teik
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 440 - 447
  • [42] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [43] A Review on Machine and Deep Learning for Semiconductor Defect Classification in Scanning Electron Microscope Images
    Lopez de la Rosa, Francisco
    Sanchez-Reolid, Roberto
    Gomez-Sirvent, Jose L.
    Morales, Rafael
    Fernandez-Caballero, Antonio
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [44] Traditional machine learning algorithms for breast cancer image classification with optimized deep features
    Atban, Furkan
    Ekinci, Ekin
    Garip, Zeynep
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [45] A Critical Review of Machine Learning Methods Used in Metal Powder Bed Fusion Process to Predict Part Properties
    Can Barış Toprak
    C. U. Dogruer
    International Journal of Precision Engineering and Manufacturing, 2024, 25 : 429 - 452
  • [46] A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
    Yadavendra
    Chand, Satish
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [47] Comparing Efficiency of Machine Learning and Deep Learning Methods for Octave Illusion Classification Using Magnetoencephalography Data
    Pilyugina N.
    Aizawa Y.
    Tsukahara A.
    Tanaka K.
    Transactions of Japanese Society for Medical and Biological Engineering, 2021, Annual 59 (Proc) : 650 - 652
  • [48] A Review on Recent Progress in Machine Learning and Deep Learning Methods for Cancer Classification on Gene Expression Data
    Mazlan, Aina Umairah
    Sahabudin, Noor Azida
    Remli, Muhammad Akmal
    Ismail, Nor Syahidatul Nadiah
    Mohamad, Mohd Saberi
    Nies, Hui Wen
    Abd Warif, Nor Bakiah
    PROCESSES, 2021, 9 (08)
  • [49] A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
    Satish Yadavendra
    Machine Vision and Applications, 2020, 31
  • [50] Machine Learning and Deep Learning for Plant Disease Classification and Detection
    Balafas, Vasileios
    Karantoumanis, Emmanouil
    Louta, Malamati
    Ploskas, Nikolaos
    IEEE ACCESS, 2023, 11 : 114352 - 114377