GENETIC ALGORITHM APPLIED TO FRACTIONAL OPTIMAL CONTROL OF A DIABETIC PATIENT

被引:2
作者
El Ouissari, A. [1 ]
El Moutaouakil, K. [1 ]
机构
[1] USMBA, Polydisplinary Fac Taza, Engn Sci Lab LSI, Rd Oujda,BP 1223, Fes, Morocco
来源
UFA MATHEMATICAL JOURNAL | 2023年 / 15卷 / 03期
关键词
Diabetic population dynamic system; Optimal control; Fractional derivative; Genetic algorithm; Artificial intelligent; ORDER PID CONTROLLER; MATHEMATICAL-MODEL; POPULATION-MODEL; OPTIMIZATION;
D O I
10.13108/2023-15-3-129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Diabetes is a dangerous disease that increases in incidence every year. The aim of this paper is to present and analyze the model of diabetes and its complications with the fractional derivative of Caputo, namely, we propose a mathematical model with a fractional derivative of the type 2 diabetes. The positivity and boundedness of the solutions is demonstrated by the Laplace transform method. We study the existence and uniqueness of the solution of the system. We use the genetic algorithm (GA) to solve the fractional differential equation model and to characterize the optimal control and this is an efficient and simple metaheuristic method to implement. Simulations of the total number of diabetics with the different values of a parameter alpha show that the combined control strategy leads to a significant decrease. The simulation results also show that the number of uncomplicated diabetics in the fractional model, for the different fractional values of alpha, decreases more rapidly than the integer derivative model.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 38 条
[1]   Intelligent Local Search for an Optimal Control of Diabetic Population Dynamics [J].
Abdellatif E.O. ;
Karim E.M. ;
Hicham B. ;
Saliha C. .
Mathematical Models and Computer Simulations, 2022, 14 (6) :1051-1071
[2]  
Akhyani M. S., 2015, J. Contr., V8, P31
[3]   An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment [J].
Ameen, I ;
Baleanu, Dumitru ;
Ali, Hegagi Mohamed .
CHAOS SOLITONS & FRACTALS, 2020, 137
[4]   CLASSIFIER SYSTEMS AND GENETIC ALGORITHMS [J].
BOOKER, LB ;
GOLDBERG, DE ;
HOLLAND, JH .
ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) :235-282
[5]   A NON-LINEAR POPULATION MODEL OF DIABETES MELLITUS [J].
Boutayeb, A. ;
Chetouani, A. ;
Achouyab, A. ;
Twizell, E. H. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2006, 21 (1-2) :127-139
[6]   A population model of diabetes and pre-diabetes [J].
Boutayeb, A. ;
Chetouani, A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (01) :57-66
[7]   A mathematical model for the burden of diabetes and its complications [J].
Boutayeb, A. ;
Twizell, E. H. ;
Achouayb, K. ;
Chetouani, A. .
BIOMEDICAL ENGINEERING ONLINE, 2004, 3 (1)
[8]  
Boutayeb A., 2014, APPL MATH SCI, V8, P2773, DOI DOI 10.12988/AMS.2014.43155
[9]   Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization [J].
Castaldo, Davide ;
Rosa, Marta ;
Corni, Stefano .
PHYSICAL REVIEW A, 2021, 103 (02)
[10]   Development and Analysis of a Mathematical Model for the Population Dynamics of Diabetes Mellitus During Pregnancy [J].
Auni Aslah Mat Daud ;
Toh C.Q. ;
Saidun S. .
Mathematical Models and Computer Simulations, 2020, 12 (4) :620-630