LAMP2A regulates the balance of mesenchymal stem cell adipo-osteogenesis via the Wnt/β-catenin/GSK3β signaling pathway

被引:9
|
作者
Wang, Yibo [1 ,2 ]
Hang, Kai [1 ,2 ]
Ying, Li [3 ]
Wu, Jiaqi [1 ,2 ]
Wu, Xiaoyong [1 ,2 ]
Zhang, Weijun [1 ,2 ]
Li, Lijun [1 ,2 ]
Wang, Zhongxiang [1 ,2 ]
Bai, Jinwu [1 ,2 ]
Gao, Xiang [1 ,2 ]
Xue, Deting [1 ,2 ]
Pan, Zhijun [1 ,2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Dept Orthoped Surg, Sch Med, 88, Jiefang Rd, Hangzhou 310009, Peoples R China
[2] Zhejiang Univ, Orthoped Res Inst, 88, Jiefang Rd, Hangzhou 310009, Peoples R China
[3] Wenzhou Med Univ, Taizhou Hosp Zhejiang Prov, Dept Orthoped, 150, Ximen St, Linhai 317000, Peoples R China
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2023年 / 101卷 / 07期
基金
中国国家自然科学基金;
关键词
CMA; LAMP2A; mMSCs; Osteogenesis; Adipogenesis; Wnt/beta-catenin/GSK3; beta; CHAPERONE-MEDIATED AUTOPHAGY; PPAR-GAMMA; DIFFERENTIATION; DISEASE; ACTIVATION; PROMOTES; INSULIN; BIOLOGY; FAMILY; MUSCLE;
D O I
10.1007/s00109-023-02328-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Chaperone-mediated autophagy (CMA) plays multiple roles in cell metabolism. We found that lysosome-associated membrane protein type 2A (LAMP2A), a crucial protein of CMA, plays a key role in the control of mesenchymal stem cell (MSC) adipo-osteogenesis. We identified a differentially expressed CMA gene (LAMP2) in GEO datasets (GSE4911 and GSE494). Further, we performed co-expression analyses to define the relationships between CMA components genes and other relevant genes including Col1a1, Runx2, Wnt3 and Gsk3 beta. Mouse BMSCs (mMSCs) exhibiting Lamp2a gene knockdown (LA-KD) and overexpression (LA-OE) were created using an adenovirus system; then we investigated LAMP2A function in vitro by Western blot, Oil Red staining, ALP staining, ARS staining and Immunofluorescence analysis. Next, we used a modified mouse model of tibial fracture to investigate LAMP2A function in vivo. LAMP2A knockdown in mMSCs decreased the levels of osteogenic-specific proteins (COL1A1 and RUNX2) and increased those of the adipogenesis markers PPAR. and C/EBPa; LAMP2A overexpression had the opposite effects. The active-beta-catenin and phospho-GSK3 beta (Ser9) levels were upregulated by LAMP2A overexpression and downregulated by LAMP2A knockdown. In the mouse model of tibial fracture, mMSC-overexpressing LAMP2A improved bone healing, as demonstrated by microcomputed tomography and histological analyses. In summary, LAMP2A positively regulates mMSC osteogenesis and suppresses adipo-osteogenesis, probably via Wnt/beta-catenin/GSK3 beta signaling. LAMP2A promoted fracture-healing in the mouse model of tibial fracture.
引用
收藏
页码:783 / 799
页数:17
相关论文
共 50 条
  • [21] Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway
    Liu, Zhaoguo
    Zhou, Song
    Zhang, Ya
    Zhao, Ming
    INFECTIOUS AGENTS AND CANCER, 2022, 17 (01)
  • [22] Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition
    Landin Malt, Andre
    Clancy, Shaylyn
    Hwang, Diane
    Liu, Alice
    Smith, Connor
    Smith, Margaret
    Hatley, Maya
    Clemens, Christopher
    Lu, Xiaowei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [23] c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/β-catenin signaling through GSK3β pathway
    Hu, Dong
    Fang, Wenfeng
    Han, Anjia
    Gallagher, Lindsay
    Davis, Roger J.
    Xiong, Bin
    Yang, Wancai
    CARCINOGENESIS, 2008, 29 (12) : 2317 - 2324
  • [24] Ultrasound-triggered piezoelectric polyetheretherketone with boosted osteogenesis via regulating Akt/GSK3β/β-catenin pathway
    Li, Yue
    Fan, Yingying
    Zhao, Siyu
    Cheng, Bo
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)
  • [25] Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin
    Haraguchi, K.
    Ohsugi, M.
    Abe, Y.
    Semba, K.
    Akiyama, T.
    Yamamoto, T.
    ONCOGENE, 2008, 27 (03) : 274 - 284
  • [26] Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin
    K Haraguchi
    M Ohsugi
    Y Abe
    K Semba
    T Akiyama
    T Yamamoto
    Oncogene, 2008, 27 : 274 - 284
  • [27] Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3β/β-Catenin Signaling
    Mao, Yingwei
    Ge, Xuecai
    Frank, Christopher L.
    Madison, Jon M.
    Koehler, Angela N.
    Doud, Mary Kathryn
    Tassa, Carlos
    Berry, Erin M.
    Soda, Takahiro
    Singh, Karun K.
    Biechele, Travis
    Petryshen, Tracey L.
    Moon, Randall T.
    Haggarty, Stephen J.
    Tsai, Li-Huei
    CELL, 2009, 136 (06) : 1017 - 1031
  • [28] DEC1 promotes osteogenesis: an involvement of PI3K/Akt/GSK3β/β-catenin signaling pathway
    Hu, Jin-hua
    Wang, Yu-wen
    Mao, Zhao
    Ning, Rui
    Liu, Wei
    Yang, Jian
    ACTA PHARMACOLOGICA SINICA, 2017, 38 (07) : 1086 - 1086
  • [29] FAK/PYK2 promotes the Wnt/β-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β
    Gao, Chenxi
    Chen, Guangming
    Kuan, Shih-Fan
    Zhang, Dennis Han
    Schlaepfer, David D.
    Hu, Jing
    ELIFE, 2015, 4
  • [30] Therapeutic effect of rhein on high glucose-induced podocyte injury via GSK3β-wnt/β-Catenin-PPARγ signaling pathway
    Duan, Su-Yan
    Zhang, Su-Hua
    Zhang, Cheng-Ning
    Wu, Ying-Yi
    Huang, Zhi-Min
    Xing, Chang-Ying
    Zhang, Bo
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2017, 10 (06): : 6279 - 6289