Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling

被引:4
作者
Zou, Qing [1 ,2 ,3 ]
Priya, Sarv [4 ]
Nagpal, Prashant [5 ]
Jacob, Mathews [6 ]
机构
[1] Univ Texas Southwestern Med Ctr, Dept Pediat, Div Pediat Cardiol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr, Adv Imaging Res Ctr, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr, Dept Radiol, Dallas, TX 75390 USA
[4] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[5] Univ Wisconsin Madison, Dept Radiol, Madison, WI 53792 USA
[6] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 03期
关键词
variational autoencoder; generative model; CNN; manifold approach; unsupervised learning; cardiac MRI; image reconstruction;
D O I
10.3390/bioengineering10030345
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The main focus of this work is to introduce a single free-breathing and ungated imaging protocol to jointly estimate cardiac function and myocardial T-1 maps. We reconstruct a time series of images corresponding to k-space data from a free-breathing and ungated inversion recovery gradient echo sequence using a manifold algorithm. We model each image in the time series as a non-linear function of three variables: cardiac and respiratory phases and inversion time. The non-linear function is realized using a convolutional neural networks (CNN) generator, while the CNN parameters, as well as the phase information, are estimated from the measured k-t space data. We use a dense conditional auto-encoder to estimate the cardiac and respiratory phases from the central multi-channel k-space samples acquired at each frame. The latent vectors of the auto-encoder are constrained to be bandlimited functions with appropriate frequency bands, which enables the disentanglement of the latent vectors into cardiac and respiratory phases, even when the data are acquired with intermittent inversion pulses. Once the phases are estimated, we pose the image recovery as the learning of the parameters of the CNN generator from the measured k-t space data. The learned CNN generator is used to generate synthetic data on demand by feeding it with appropriate latent vectors. The proposed approach capitalizes on the synergies between cine MRI and T-1 mapping to reduce the scan time and improve patient comfort. The framework also enables the generation of synthetic breath-held cine movies with different inversion contrasts, which improves the visualization of the myocardium. In addition, the approach also enables the estimation of the T-1 maps with specific phases, which is challenging with breath-held approaches.
引用
收藏
页数:18
相关论文
共 35 条
[1]   Fundamentals of balanced steady state free precession MRI [J].
Bieri, Oliver ;
Scheffler, Klaus .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (01) :2-11
[2]   Saturation Recovery Single-Shot Acquisition (SASHA) for Myocardial T1 Mapping [J].
Chow, Kelvin ;
Flewitt, Jacqueline A. ;
Green, Jordin D. ;
Pagano, Joseph J. ;
Friedrich, Matthias G. ;
Thompson, Richard B. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (06) :2082-2095
[3]   Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging [J].
Christodoulou, Anthony G. ;
Shaw, Jaime L. ;
Nguyen, Christopher ;
Yang, Qi ;
Xie, Yibin ;
Wang, Nan ;
Li, Debiao .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (04) :215-226
[4]   Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping [J].
Doneva, Mariya ;
Boernert, Peter ;
Eggers, Holger ;
Stehning, Christian ;
Senegas, Julien ;
Mertins, Alfred .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) :1114-1120
[5]  
Epstein FH, 2000, JMRI-J MAGN RESON IM, V11, P75, DOI 10.1002/(SICI)1522-2586(200002)11:2<75::AID-JMRI1>3.0.CO
[6]  
2-P
[7]   XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing [J].
Feng, Li ;
Axel, Leon ;
Chandarana, Hersh ;
Block, Kai Tobias ;
Sodickson, Daniel K. ;
Otazo, Ricardo .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) :775-788
[8]  
Haaf P, 2016, J CARDIOVASC MAGN R, V18, DOI [10.1186/1532-429x-17-s1-p163, 10.1186/s12968-016-0308-4]
[9]   Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting [J].
Hamilton, Jesse, I ;
Jiang, Yun ;
Ma, Dan ;
Lo, Wei-Ching ;
Gulani, Vikas ;
Griswold, Mark ;
Seiberlich, Nicole .
MAGNETIC RESONANCE IMAGING, 2018, 53 :40-51
[10]   MR Fingerprinting for Rapid Quantification of Myocardial T1, T2, and Proton Spin Density [J].
Hamilton, Jesse I. ;
Jiang, Yun ;
Chen, Yong ;
Ma, Dan ;
Lo, Wei-Ching ;
Griswold, Mark ;
Seiberlich, Nicole .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (04) :1446-1458