Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks

被引:8
|
作者
Hara, Patryk [1 ]
Piekutowska, Magdalena [2 ]
Niedbala, Gniewko [3 ]
机构
[1] Agrotechnol, Jagiellonow 4, PL-73150 Lobez, Poland
[2] Pomeranian Univ Slupsk, Inst Biol & Earth Sci, Dept Geoecol & Geoinformat, 27 Partyzantow St, PL-76200 Slupsk, Poland
[3] Poznan Univ Life Sci, Fac Environm & Mech Engn, Dept Biosyst Engn, Wojska Polskiego 50, PL-60627 Poznan, Poland
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 03期
关键词
pea; seeds yield prediction; ANN; MLR; sensitivity analysis; GRAIN-YIELD; CROP; LOCATIONS; MODEL;
D O I
10.3390/agriculture13030661
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A sufficiently early and accurate prediction can help to steer crop yields more consciously, resulting in food security, especially with an expanding world population. Additionally, prediction related to the possibility of reducing agricultural chemistry is very important in an era of climate change. This study analyzes the performance of pea (Pisum sativum L.) seed yield prediction by a linear (MLR) and non-linear (ANN) model. The study used meteorological, agronomic and phytophysical data from 2016-2020. The neural model (N2) generated highly accurate predictions of pea seed yield-the correlation coefficient was 0.936, and the RMS and MAPE errors were 0.443 and 7.976, respectively. The model significantly outperformed the multiple linear regression model (RS2), which had an RMS error of 6.401 and an MAPE error of 148.585. The sensitivity analysis carried out for the neural network showed that the characteristics with the greatest influence on the yield of pea seeds were the date of onset of maturity, the date of harvest, the total amount of rainfall and the mean air temperature.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Prediction of Protein Content in Pea (Pisum sativum L.) Seeds Using Artificial Neural Networks
    Hara, Patryk
    Piekutowska, Magdalena
    Niedbala, Gniewko
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [2] Infestation of pea seeds (Pisum sativum L.) with pathogenic microorganisms
    Gradoboeva, T. P.
    THEORETICAL AND APPLIED ECOLOGY, 2021, (03): : 179 - 185
  • [3] Application of SNPs to improve yield of Pisum sativum L. (pea)
    Mehmood, Ansar
    Murtaza, Ghulam
    IET NANOBIOTECHNOLOGY, 2017, 11 (04) : 390 - 394
  • [4] A NOVEL PEA (PISUM SATIVUM L.) PHENOTYPE WITH BLACK HILUM SEEDS
    Naidenova, Nadka
    Vassilevska-Ivanova, Roumiana
    Kraptchev, Boris
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (09): : 1363 - 1370
  • [5] The yield and yield components of pea (Pisum sativum L.) as influenced by salicylic acid
    Murtaza, Ghulam
    Asghar, Rehana
    Ahmad, Shahbaz
    Majid, Syed Abdul
    PAKISTAN JOURNAL OF BOTANY, 2007, 39 (02) : 551 - 559
  • [6] Prediction of heterotic crosses for yield in Pisum sativum L.
    Andrea Esposito, Maria
    Bermejo, Carolina
    Gatti, Ileana
    Fernanda Guindon, Maria
    Cravero, Vanina
    Luis Cointry, Enrique
    SCIENTIA HORTICULTURAE, 2014, 177 : 53 - 62
  • [7] CLIMATE CHANGE AND FERTILIZATION INTERACTIONS ON PEA (PISUM SATIVUM L.) YIELD
    Marton, Laszlo
    CEREAL RESEARCH COMMUNICATIONS, 2008, 36 : 703 - 706
  • [8] Effect of mineral fertilisation on the yield and quality of pea (Pisum sativum L.)
    Kádár, I
    Fekete, S
    Radics, L
    NOVENYTERMELES, 2003, 52 (02): : 229 - 242
  • [9] Stability Analysis for Yield and Quality Characters in Pea (Pisum sativum L.)
    Sirohi, S. P. S.
    Gaurav, S. S.
    VEGETOS, 2008, 21 (01): : 103 - 109
  • [10] Proteases catalyzing vicilin cleavage in developing pea (Pisum sativum L.) seeds
    Wilson, Karl A.
    Tan-Wilson, Anna
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 224 : 86 - 94