Thermal Characterisation of Automotive-Sized Lithium-Ion Pouch Cells Using Thermal Impedance Spectroscopy

被引:3
作者
Droese, Dominik [1 ]
Kowal, Julia [1 ]
机构
[1] Tech Univ Berlin, Inst Energy & Automat, Elect Energy Storage Technol EET, Einsteinufer 11, D-10587 Berlin, Germany
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 05期
关键词
lithium-ion battery; thermal characterisation; thermal impedance spectroscopy; heat capacity; thermal conductivity; HEAT-GENERATION; BATTERY; TEMPERATURE; CAPACITY; ENTROPY; PARAMETERS; BEHAVIOR; STATE;
D O I
10.3390/app13052870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study used thermal impedance spectroscopy to measure a 46 Ah high-power lithium-ion pouch cell, introducing a testing setup for automotive-sized cells to extract the relevant thermal parameters, reducing the time for thermal characterisation in the complete operational range. The results are validated by measuring the heat capacity using an easy-to-implement calorimetric measurement method. For the investigated cell at 50% state of charge and an ambient temperature of 25 degrees C, values for the specific heat capacity of 1.25 J/(gK) and the cross-plane thermal conductivity of 0.47 W/(mK) are obtained. For further understanding, the values were measured at different states of charge and at different ambient temperatures, showing a notable dependency only on the thermal conductivity from the temperature of -0.37%/K. Also, a comparison of the cell with a similar-sized 60 Ah high-energy cell is investigated, comparing the influence of the cell structure to the thermal behaviour of commercial cells. This observation shows about 15% higher values in heat capacity and cross-plane thermal conductivity for the high-energy cell. Consequently, the presented setup is a straightforward implementation to accurately obtain the required model parameters, which could be used prospectively for module characterisation and investigating thermal propagation through the cells.
引用
收藏
页数:13
相关论文
共 38 条
[1]   In Situ Measurement of Orthotropic Thermal Conductivity on Commercial Pouch Lithium-Ion Batteries with Thermoelectric Device [J].
Aiello, Luigi ;
Kovachev, Georgi ;
Brunnsteiner, Bernhard ;
Schwab, Martin ;
Gstrein, Gregor ;
Sinz, Wolfgang ;
Ellersdorfer, Christian .
BATTERIES-BASEL, 2020, 6 (01)
[2]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[3]  
Arzberger A., 2014, P AABC 2014 ADV AUTO
[4]   Thermal impedance spectroscopy for Li-ion batteries using heat-pulse response analysis [J].
Barsoukov, E ;
Jang, JH ;
Lee, H .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :313-320
[5]   Predicting heat generation in a lithium-ion pouch cell through thermography and the lumped capacitance model [J].
Bazinski, S. J. ;
Wang, X. .
JOURNAL OF POWER SOURCES, 2016, 305 :97-105
[6]   Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells [J].
Bazinski, Sj. ;
Wang, X. ;
Sangeorzan, B. P. ;
Guessous, L. .
ENERGY, 2016, 114 :1085-1092
[7]   Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell [J].
Bazinski, Stephen J. ;
Wang, Xia .
JOURNAL OF POWER SOURCES, 2015, 293 :283-291
[8]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[9]   Methodology to determine the heat capacity of lithium-ion cells [J].
Bryden, Thomas S. ;
Dimitrov, Borislav ;
Hilton, George ;
de Leon, Carlos Ponce ;
Bugryniec, Peter ;
Brown, Solomon ;
Cumming, Denis ;
Cruden, Andrew .
JOURNAL OF POWER SOURCES, 2018, 395 :369-378
[10]   Estimation of the heat generation rates in electrochemical cells [J].
Catherino, Henry A. .
JOURNAL OF POWER SOURCES, 2013, 239 :505-512