Atomic Structural Origin of the High Methanol Selectivity over In2O3-Metal Interfaces: Metal-Support Interactions and the Formation of a InOX Overlayer in Ru/In2O3 Catalysts during CO2 Hydrogenation

被引:67
作者
Rui, Ning [1 ]
Wang, Xuelong [1 ]
Deng, Kaixi [2 ]
Moncada, Jorge [1 ]
Rosales, Rina [2 ]
Zhang, Feng [3 ]
Xu, Wenqian [4 ]
Waluyo, Iradwikanari [5 ]
Hunt, Adrian [5 ]
Stavitski, Eli [5 ]
Senanayake, Sanjaya D. [1 ]
Liu, Ping [1 ,2 ]
Rodriguez, Jose A. [1 ,2 ,3 ]
机构
[1] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Mat Sci & Chem Engn Dept, Stony Brook, NY 11794 USA
[4] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA
[5] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
关键词
CO2; hydrogenation; methanol synthesis; hydrogen; ruthenium; indium oxide; TOTAL-ENERGY CALCULATIONS; OXIDE; ABSORPTION; MECHANISM; STATE; CERIA; DFT; CU;
D O I
10.1021/acscatal.2c06029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation to methanol is of great environmental and economic interest due to its potential to reduce carbon emissions and produce valuable chemicals in one single reaction. Compared with the unmodified traditional Cu/ZnO/Al2O3 catalyst, an indium oxide (In2O3)-based catalyst can double the methanol selectivity from 30-50 to 60-100%. It is worth noting that over catalysts involving various active metals dispersed on indium oxide (M/In2O3, M = Pd, Ni, Au, etc.), although the methanol yield is boosted, the selectivity remains similar to that of plain In2O3 despite the distinct chemical properties of the added metals. To investigate the phenomena behind this behavior, here we used RuO2/In2O3 as a test catalyst. The results of ambient pressure photoelectron spectroscopy, in situ X-ray absorption fine structure, and time-resolved X-ray diffraction indicate that the structure of the RuO2/In2O3 catalyst is highly dynamic in the presence of a reactive environment. Specifically, under CO2 hydrogenation conditions, Ru clusters facilitate the reduction of In2O3 to generate In2O3-x aggregates, which encapsulate the Ru systems in a migration driven by thermodynamics. In this way, the Ru-0 sites for CH4 production are blocked while creating RuOx-In2O3-x interfacial sites with tunable metal-oxide interactions for selective methanol production. In an inverse oxide/metal configuration, indium oxide has properties not seen in its bulk phase that are useful for the binding and conversion of CO2. This work reveals the dynamic nature of In2O3-based catalysts, providing insights for a rational design of materials for the selective synthesis of methanol.
引用
收藏
页码:3187 / 3200
页数:14
相关论文
共 65 条
[1]   The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst [J].
Amann, Peter ;
Kloetzer, Bernhard ;
Degerman, David ;
Koepfle, Norbert ;
Goetsch, Thomas ;
Loemker, Patrick ;
Rameshan, Christoph ;
Ploner, Kevin ;
Bikaljevic, Djuro ;
Wang, Hsin-Yi ;
Soldemo, Markus ;
Shipilin, Mikhail ;
Goodwin, Christopher M. ;
Gladh, Joergen ;
Stenlid, Joakim Halldin ;
Boerner, Mia ;
Schlueter, Christoph ;
Nilsson, Anders .
SCIENCE, 2022, 376 (6593) :603-+
[2]   Turning a Methanation Co Catalyst into an In-Co Methanol Producer [J].
Bavykina, Anastasiya ;
Yarulina, Irina ;
Al Abdulghani, Abdullah J. ;
Gevers, Lieven ;
Hedhili, Mohamed Nejib ;
Miao, Xiaohe ;
Galilea, Adrian Ramirez ;
Pustovarenko, Alexey ;
Dikhtiarenko, Alla ;
Cadiau, Amandine ;
Aguilar-Tapia, Antonio ;
Hazemann, Jean-Louis ;
Kozlov, Sergey M. ;
Oud-Chikh, Samy ;
Cavallo, Luigi ;
Gascon, Jorge .
ACS CATALYSIS, 2019, 9 (08) :6910-6918
[3]   The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction [J].
Beck, Arik ;
Huang, Xing ;
Artiglia, Luca ;
Zabilskiy, Maxim ;
Wang, Xing ;
Rzepka, Przemyslaw ;
Palagin, Dennis ;
Willinger, Marc-Georg ;
van Bokhoven, Jeroen A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[6]  
Campbell CT, 2012, NAT CHEM, V4, P597, DOI 10.1038/nchem.1412
[7]  
Chen S., 2020, ANGEW CHEM INT EDIT, V59
[8]   INSITU CELL FOR COMBINED XRD AND ONLINE CATALYSIS TESTS - STUDIES OF CU-BASED WATER GAS SHIFT AND METHANOL CATALYSTS [J].
CLAUSEN, BS ;
STEFFENSEN, G ;
FABIUS, B ;
VILLADSEN, J ;
FEIDENHANSL, R ;
TOPSOE, H .
JOURNAL OF CATALYSIS, 1991, 132 (02) :524-535
[9]  
Dittmer J, 1998, PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, P1339
[10]   Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide [J].
Frei, M. S. ;
Capdevila-Cortada, M. ;
Garcia-Muelas, R. ;
Mondelli, C. ;
Lopez, N. ;
Stewart, J. A. ;
Ferre, D. Curulla ;
Perez-Ramirez, J. .
JOURNAL OF CATALYSIS, 2018, 361 :313-321