An Attention-Based Uncertainty Revising Network with Multi-Loss for Environmental Microorganism Segmentation

被引:0
作者
Na, Hengyuan [1 ]
Liu, Dong [2 ,3 ,4 ]
Wang, Shengsheng [5 ,6 ]
机构
[1] Jilin Univ, Coll Software, Changchun 130012, Peoples R China
[2] Xiangnan Univ, Sch Comp & Artificial Intelligence, Chenzhou 423300, Peoples R China
[3] Xiangnan Univ, Hunan Engn Res Ctr Adv Embedded Comp & Intelligent, Chenzhou 423300, Peoples R China
[4] Xiangnan Univ, Key Lab Med Imaging & Artificial Intelligence Huna, Chenzhou 423300, Peoples R China
[5] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[6] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
关键词
environmental organisms; semantic segmentation; deep learning; computer vision; uncertainty revising network; U-NET; CLASSIFICATION;
D O I
10.3390/electronics12030763
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The presence of environmental microorganisms is inevitable in our surroundings, and segmentation is essential for researchers to identify, understand, and utilize the microorganisms; make use of their benefits; and prevent harm. However, the segmentation of environmental microorganisms is challenging because their vague margins are almost transparent compared with those of the environment. In this study, we propose a network with an uncertainty feedback module to find ambiguous boundaries and regions and an attention module to localize the major region of the microorganism. Furthermore, we apply a mid-pred module to output low-resolution segmentation results directly from decoder blocks at each level. This module can help the encoder and decoder capture details from different scales. Finally, we use multi-loss to guide the training. Rigorous experimental evaluations on the benchmark dataset demonstrate that our method achieves higher scores than other sophisticated network models (95.63% accuracy, 89.90% Dice, 81.65% Jaccard, 94.68% recall, 0.59 ASD, 2.24 HD95, and 85.58% precision) and outperforms them.
引用
收藏
页数:17
相关论文
共 48 条
[1]   Image segmentation of activated sludge phase contrast images using phase stretch transform [J].
Ang, Raymond Bing Quan ;
Nisar, Humaira ;
Khan, Muhammad Burhan ;
Tsai, Chi-Yi .
MICROSCOPY, 2019, 68 (02) :144-158
[2]   CNN Based Yeast Cell Segmentation in Multi-Modal Fluorescent Microscopy Data [J].
Aydin, Ali Selman ;
Dubey, Abhinandan ;
Dovrat, Daniel ;
Aharoni, Amir ;
Shilkrot, Roy .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :753-759
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[5]   Identification of Microorganisms by Modern Analytical Techniques [J].
Buszewski, Boguslaw ;
Rogowska, Agnieszka ;
Pomastowski, Pawel ;
Zloch, Michal ;
Railean-Plugaru, Viorica .
JOURNAL OF AOAC INTERNATIONAL, 2017, 100 (06) :1607-1623
[6]  
Byeon W, 2015, PROC CVPR IEEE, P3547, DOI 10.1109/CVPR.2015.7298977
[7]   MC-UNet: Martian Crater Segmentation at Semantic and Instance Levels Using U-Net-Based Convolutional Neural Network [J].
Chen, Dong ;
Hu, Fan ;
Mathiopoulos, P. Takis ;
Zhang, Zhenxin ;
Peethambaran, Jiju .
REMOTE SENSING, 2023, 15 (01)
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]  
Dosovitskiy Alexey, 2010, arXiv
[10]   SEGMENTATION AND CLASSIFICATION OF BACTERIAL CULTURE IMAGES [J].
DUBUISSON, MP ;
JAIN, AK ;
JAIN, MK .
JOURNAL OF MICROBIOLOGICAL METHODS, 1994, 19 (04) :279-295