Behavior and model evaluation of large-rupture-strain (LRS) FRP-confined concrete-encased high-strength steel columns under axial compression

被引:31
|
作者
Zhu, De-Hua [1 ]
Zhong, Gen-Quan [1 ]
Zeng, Jun-Jie [1 ,2 ]
Liao, Jinjing [1 ]
机构
[1] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Peoples R China
关键词
Axial compression; PET fiber reinforced polymer; Monotonic axial compression; High-strength steel (HSS); Encased steel section; Confinement;
D O I
10.1016/j.tws.2022.110367
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fiber reinforced polymers (FRP)-confined concrete-encased steel columns (FCSCs) have become increasingly popular. However, few studies have been conducted on the FCSCs with a large-rupture-strain (LRS) FRP tube. To this end, the axial compressive behavior of FCSCs with a polyethylene terephthalate (PET) FRP tube (PFCSCs) is investigated in this study. A total of eighteen circular stub columns (i.e., two unconfined specimens, four PET FRP-confined concrete columns (PFCCs), and twelve PFCSCs) were tested under axial compression, in which the PET FRP tube thickness, the shape and nominal yield strength of the encased steel sections were the focal points. The results indicate that the steel strength can be fully utilized because local instability of the encased steel sections can be well suppressed by the surrounding concrete. The specimens with a circular steel tube had better performance than those with a cruciform steel due to the additional confinement provided by the circular steel tube. Moreover, a model assessment suggested that the models of Lin et al. and Zeng et al. could provide relatively satisfactory predictions for the ultimate stress and strain of confined concrete in PFCSCs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] FRP-Confined Square Concrete Columns with Section Curvilinearization under Axial Compression
    Zhu, J. Y.
    Lin, G.
    Teng, J. -G.
    Chan, T. -M.
    Zeng, J. -J.
    Li, L. -J.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2020, 24 (02)
  • [22] Behavior and design-oriented model for elliptical FRP-confined concrete under axial compression
    Chen, Guipeng
    Wang, Yanlei
    Yu, Tao
    Wan, Baolin
    Zhang, Bing
    Liu, Qing
    ENGINEERING STRUCTURES, 2021, 249
  • [23] FRP-confined Concrete Cylinders: Axial Compression Experiments and Strength Model
    Benzaid, Riad
    Mesbah, Habib
    Chikh, Nasr Eddine
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (16) : 2469 - 2488
  • [24] Behavior of large-scale FRP-confined rectangular RC columns under axial compression
    Zeng, J. J.
    Lin, G.
    Teng, J. G.
    Li, L. J.
    ENGINEERING STRUCTURES, 2018, 174 : 629 - 645
  • [25] Behaviour of concrete-encased concrete-filled FRP tube (CCFT) columns under axial compression
    Wang, Weiqiang
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    Gao, Danying
    Chen, Gang
    ENGINEERING STRUCTURES, 2017, 147 : 256 - 268
  • [26] FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression
    Yu, T.
    Hu, Y. M.
    Teng, J. G.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2014, 94 : 33 - 48
  • [27] FRP-confined concrete core-encased rebar for RC columns: Concept and axial compressive behavior
    Wang, Zeyuan
    Feng, Peng
    Zhao, Yi
    Yu, Tao
    COMPOSITE STRUCTURES, 2019, 222
  • [28] Compression behavior and modeling of FRP-confined high strength geopolymer concrete
    Alrshoudi, Fahed
    Abbas, Husain
    Abadel, Aref
    Albidah, Abdulrahman
    Altheeb, Ali
    Al-Salloum, Yousef
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 283 (283)
  • [29] Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression
    Xie, Tianyu
    Ozbakkaloglu, Togay
    ENGINEERING STRUCTURES, 2015, 90 : 158 - 171
  • [30] Axial Strains in FRP-Confined Normal- and High-Strength Concrete: An Examination of Strain Measurement Methods
    Vincent, Thomas
    Ozbakkaloglu, Togay
    ADVANCED CONSTRUCTION TECHNOLOGIES, 2014, 919-921 : 23 - 28