Complex group rings and group C*-algebras of group extensions

被引:0
作者
Oinert, Johan [1 ]
Wagner, Stefan [1 ]
机构
[1] Blekinge Inst Technol, Dept Math & Nat Sci, SE-37179 Karlskrona, Sweden
关键词
Complex group ring; Group extension; Crossed product; Crossed system; Torsion-free group; Zero-divisor conjecture; Idempotent conjecture; Group C*-algebra; Kadison-Kaplansky conjecture; ZERO DIVISORS; IDEMPOTENTS; CONJECTURE;
D O I
10.1007/s10801-022-01183-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N and H be groups, and letG be an extension of H by N. In this article, we describe the structure of the complex group ring of G in terms of data associated with N and H. In particular, we present conditions on the building blocks N and H guaranteeing that G satisfies the zero-divisor and idempotent conjectures. Moreover, for central extensions involving amenable groups we present conditions on the building blocks guaranteeing that the Kadison-Kaplansky conjecture holds for the group C*-algebra of G.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 29 条
[1]  
Brown Kenneth A., 1976, Bull. London Math. Soc, V8, P251, DOI DOI 10.1112/BLMS/8.3.251
[2]   CENTRAL IDEMPOTENTS IN GROUP RINGS [J].
BURNS, RG .
CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04) :527-&
[3]  
Cayley Arthur., 1854, PHILOS MAG, V7, P40, DOI [10.1080/14786445408647421, DOI 10.1080/14786445408647421]
[4]   ZERO DIVISORS AND IDEMPOTENTS IN GROUP-RINGS [J].
CLIFF, GH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03) :596-602
[5]   On the unit conjecture for supersoluble group algebras [J].
Craven, David A. ;
Pappas, Peter .
JOURNAL OF ALGEBRA, 2013, 394 :310-356
[6]  
Dauns J., 1968, MEM AM MATH SOC, V83
[7]   C*-superrigidity of 2-step nilpotent groups [J].
Eckhardt, Caleb ;
Raum, Sven .
ADVANCES IN MATHEMATICS, 2018, 338 :175-195
[8]  
Exel R, 1997, J REINE ANGEW MATH, V492, P41
[9]   IDEMPOTENTS IN NOETHERIAN GROUP RINGS [J].
FORMANEK, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (02) :366-369
[10]  
Formanek Edward., 1973, Bull. Austral. Math. Soc, V9, P69, DOI DOI 10.1017/S000497270004288X