The divergence-free nonconforming virtual element method for the Navier-Stokes problem

被引:14
作者
Zhang, Bei [1 ]
Zhao, Jikun [2 ]
Li, Meng [2 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
divergence-free; Navier-Stokes problem; nonconforming virtual element; polygonal mesh; FORMULATION; DARCY;
D O I
10.1002/num.22812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the divergence-free nonconforming virtual element method for the Navier-Stokes problem. By using a gradient projection operator, we construct a nonconforming virtual element that allows us to compute the L-2-projection. The nonconforming virtual element provides the exact divergence-free approximation to the velocity and is proved to be convergent with the optimal convergence rate. Finally, the numerical results are shown to confirm the convergence of the nonconforming virtual element.
引用
收藏
页码:1977 / 1995
页数:19
相关论文
共 41 条
  • [21] BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
    da Veiga, L. Beirao
    Brezzi, F.
    Cangiani, A.
    Manzini, G.
    Marini, L. D.
    Russo, A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) : 199 - 214
  • [22] Stability analysis for the virtual element method
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Russo, Alessandro
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (13) : 2557 - 2594
  • [23] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535
  • [24] THE NONCONFORMING VIRTUAL ELEMENT METHOD
    de Dios, Blanca Ayuso
    Lipnikov, Konstantin
    Manzini, Gianmarco
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2016, 50 (03) : 879 - 904
  • [25] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14) : 2719 - 2762
  • [26] Girault V., 1986, FINITE ELEMENT METHO
  • [27] Nonconforming Virtual Element Method for the Time Fractional Reaction-Subdiffusion Equation with Non-smooth Data
    Li, Meng
    Zhao, Jikun
    Huang, Chengming
    Chen, Shaochun
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1823 - 1859
  • [28] Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD
    Linke, Alexander
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) : 3278 - 3286
  • [29] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [30] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711