The divergence-free nonconforming virtual element method for the Navier-Stokes problem

被引:14
|
作者
Zhang, Bei [1 ]
Zhao, Jikun [2 ]
Li, Meng [2 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
divergence-free; Navier-Stokes problem; nonconforming virtual element; polygonal mesh; FORMULATION; DARCY;
D O I
10.1002/num.22812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the divergence-free nonconforming virtual element method for the Navier-Stokes problem. By using a gradient projection operator, we construct a nonconforming virtual element that allows us to compute the L-2-projection. The nonconforming virtual element provides the exact divergence-free approximation to the velocity and is proved to be convergent with the optimal convergence rate. Finally, the numerical results are shown to confirm the convergence of the nonconforming virtual element.
引用
收藏
页码:1977 / 1995
页数:19
相关论文
共 50 条
  • [1] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [2] A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem ?
    Liu, Xin
    Li, Rui
    Nie, Yufeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [3] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Kwak, Do Y.
    Park, Hyeokjoo
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 449 - 471
  • [4] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Do Y. Kwak
    Hyeokjoo Park
    Numerical Algorithms, 2022, 91 : 449 - 471
  • [5] A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes
    Wang, Gang
    Wang, Feng
    He, Yinnian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)
  • [6] A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes
    Gang Wang
    Feng Wang
    Yinnian He
    Advances in Computational Mathematics, 2021, 47
  • [7] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [8] The nonconforming virtual element method for the Navier-Stokes equations
    Xin Liu
    Zhangxin Chen
    Advances in Computational Mathematics, 2019, 45 : 51 - 74
  • [9] A DIVERGENCE-FREE STABILIZED FINITE ELEMENT METHOD FOR THE EVOLUTIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Novo, Julia
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3809 - A3836
  • [10] PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS
    Wei, Huayi
    Huang, Xuehai
    Li, Ao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1835 - 1856