Detecting entanglement by pure bosonic extension

被引:0
作者
Zhu, Xuanran [1 ]
Zhang, Chao [1 ]
Cao, Chenfeng [1 ]
Li, Youning [2 ]
Poon, Yiu Tung [3 ]
Zeng, Bei [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100080, Peoples R China
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
RELATIVE ENTROPY; QUANTUM; SEPARABILITY; STATES;
D O I
10.1103/PhysRevResearch.6.013249
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the realm of quantum information theory, the detection and quantification of quantum entanglement stand as paramount tasks. The relative entropy of entanglement (REE) serves as a prominent measure of entanglement, with extensive applications spanning numerous related fields. The positive partial transpose (PPT) criterion, while providing an efficient method for the computation of REE, unfortunately, falls short when dealing with bound entanglement. In this study, we propose a method termed "pure bosonic extension" to enhance the practicability of k-bosonic extensions, which approximates the set of separable states from the "outside", through a hierarchical structure. It enables efficient characterization of the set of k-bosonic extendible states, facilitating the derivation of accurate lower bounds for REE. Compared to the semi-definite programming (SDP) approach, such as the symmetric/bosonic extension function in QETLAB, our algorithm supports much larger dimensions and higher values of extension k.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] COMPUTING THE FRECHET DERIVATIVE OF THE MATRIX LOGARITHM AND ESTIMATING THE CONDITION NUMBER
    Al-Mohy, Awad H.
    Higham, Nicholas J.
    Relton, Samuel D.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) : C394 - C410
  • [2] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [3] Bloch vectors for qudits
    Bertlmann, Reinhold A.
    Krammer, Philipp
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [4] Noisy intermediate-scale quantum algorithm for semidefinite programming
    Bharti, Kishor
    Haug, Tobias
    Vedral, Vlatko
    Kwek, Leong-Chuan
    [J]. PHYSICAL REVIEW A, 2022, 105 (05)
  • [5] Symmetric extension of two-qubit states
    Chen, Jianxin
    Ji, Zhengfeng
    Kribs, David
    Luetkenhaus, Norbert
    Zeng, Bei
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [6] Unextendible product bases, uncompletable product bases and bound entanglement
    DiVincenzo, DP
    Mor, T
    Shor, PW
    Smolin, JA
    Terhal, BM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) : 379 - 410
  • [7] Complete family of separability criteria
    Doherty, AC
    Parrilo, PA
    Spedalieri, FM
    [J]. PHYSICAL REVIEW A, 2004, 69 (02): : 20
  • [8] Distinguishing separable and entangled states
    Doherty, AC
    Parrilo, PA
    Spedalieri, FM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (18) : 1879041 - 1879044
  • [9] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780
  • [10] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663