Breaking the trade-off between capacity and stability in vanadium-based zinc-ion batteries

被引:11
|
作者
Jiang, Weikang [1 ,2 ]
Zhu, Kaiyue [2 ,3 ]
Xie, Weili [2 ,3 ]
Wang, Zhengsen [2 ,4 ]
Ou, Zuqiao [2 ,3 ]
Yang, Weishen [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Dalian Univ Technol, Sch Chem, Dalian 116024, Peoples R China
关键词
CATHODE; CONSEQUENCES; CHEMISTRY; MECHANISM; V2O5;
D O I
10.1039/d3sc05726g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water in electrolytes is a double-edged sword in zinc-ion batteries (ZIBs). While it allows for proton insertion in the cathode, resulting in a significant increase in capacity compared to that of organic ZIBs, it also causes damage to electrodes, leading to performance degradation. To overcome the capacity-stability trade-off, organic solvents containing a small amount of water are proposed to mitigate the harmful effects of water while ensuring sufficient proton insertion. Remarkably, in a Zn(OTf)2 electrolyte using 8% H2O in acetonitrile as the solvent, Zn||(NH4)0.5V2O5 center dot 0.5H2O exhibited a capacity as high as 490 mA h g-1 at a low current (0.3 A g-1), with a capacity retention of 80% even after 9000 cycles at high current (6 A g-1), simultaneously achieving the high capacity as in pure aqueous electrolytes and excellent stability as in organic electrolytes. We also found that the water content strongly impacts the kinetics and reversibility of ion insertion/extraction and zinc stripping/plating. Furthermore, compared to electrolytes with pure acetonitrile or H2O solvents, electrolytes with only 8% H2O in acetonitrile provide higher capacities at temperatures ranging from 0 to -50 degrees C. These discoveries enhance our understanding of the mechanisms involved in ZIBs and present a promising path toward enhancing electrolyte solutions for the creation of high-performance ZIBs. To break the capacity-stability trade-off in zinc ion batteries, electrolytes using organic solvents with a small amount of water are first proposed to ensure sufficient proton insertion while minimizing the harmful effects of water on electrodes.
引用
收藏
页码:2601 / 2611
页数:11
相关论文
共 50 条
  • [1] Facing the capacity fading of vanadium-based zinc-ion batteries
    Xing, Zhenyue
    Xu, Guofu
    Han, Junwei
    Chen, Gen
    Lu, Bingan
    Liang, Shuquan
    Zhou, Jiang
    TRENDS IN CHEMISTRY, 2023, 5 (05): : 380 - 392
  • [2] Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries
    Wan, Fang
    Niu, Zhiqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) : 16358 - 16367
  • [3] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Lin Gou
    Wentao Zhao
    Huan Li
    Xingjiang Liu
    Qiang Xu
    Journal of Solid State Electrochemistry, 2024, 28 : 113 - 123
  • [4] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Gou, Lin
    Zhao, Wentao
    Li, Huan
    Liu, Xingjiang
    Xu, Qiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 113 - 123
  • [5] Recent advances of vanadium-based cathode materials for zinc-ion batteries
    Xuerong Li
    Haoyan Cheng
    Hao Hu
    Kunming Pan
    Tongtong Yuan
    Wanting Xia
    ChineseChemicalLetters, 2021, 32 (12) : 3753 - 3761
  • [6] Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries
    Yaru Zhang
    Aibing Chen
    Jie Sun
    Journal of Energy Chemistry, 2021, 54 (03) : 655 - 667
  • [7] Recent advances of vanadium-based cathode materials for zinc-ion batteries
    Li, Xuerong
    Cheng, Haoyan
    Hu, Hao
    Pan, Kunming
    Yuan, Tongtong
    Xia, Wanting
    CHINESE CHEMICAL LETTERS, 2021, 32 (12) : 3753 - 3761
  • [8] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Min Chen
    Shu-Chao Zhang
    Zheng-Guang Zou
    Sheng-Lin Zhong
    Wen-Qin Ling
    Jing Geng
    Fang-An Liang
    Xiao-Xiao Peng
    Yang Gao
    Fa-Gang Yu
    RareMetals, 2023, 42 (09) : 2868 - 2905
  • [9] Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries
    Chen, Min
    Zhang, Shu-Chao
    Zou, Zheng-Guang
    Zhong, Sheng-Lin
    Ling, Wen-Qin
    Geng, Jing
    Liang, Fang-An
    Peng, Xiao-Xiao
    Gao, Yang
    Yu, Fa-Gang
    RARE METALS, 2023, 42 (09) : 2868 - 2905
  • [10] Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries
    Zhang, Yaru
    Chen, Aibing
    Sun, Jie
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 655 - 667