Characteristics of OH formation during single coal particle ignition and volatile combustion in O2/N2 and O2/CO2 atmospheres

被引:6
|
作者
Song, Yawei [1 ]
Su, Sheng [1 ]
Liu, Yushuai [2 ]
Zhao, Zheng [1 ]
Xu, Kai [1 ]
Xu, Jun [1 ,3 ]
Jiang, Long [4 ]
Wang, Yi [1 ]
Hu, Song [1 ]
Xiang, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Thermal & Power Engn, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept New Energy Sci & Engn, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
OH-PLIF; Oxy-fuel; Ignition; Volatile combustion; Volatile release; MULTIPOINT LIBS; SODIUM RELEASE; CHAR STRUCTURE; ZHUNDONG COAL; CO2; TEMPERATURE; PYROLYSIS; MIXTURES; O-2/N-2; METHANE;
D O I
10.1016/j.energy.2023.129743
中图分类号
O414.1 [热力学];
学科分类号
摘要
The behaviors of volatile combustion and ignition of lignite coal were assessed on a concentrating light heating platform using hydroxyl-Planar laser-induced fluorescence (OH-PLIF) over a range of 21-60% O2 in both N2 and CO2 diluent gases. The results indicated that when the O2 concentration was below 40%, substituting CO2 for N2 delayed the ignition delay time (tign). This was evident as no ignition occurred in the 21% O2/CO2 mixture, and a nearly 1.0 s difference in tign emerged when substituting CO2 for N2 in 30% and 40% air atmospheres. Additionally, the weaker flame luminosity and the shorter volatile flame duration time (tvol) were also observed in O2/CO2 compared with that in O2/N2. Correspondingly, a significantly lower OH signal intensity was observed in O2/CO2 compared to O2/N2, which was primarily due to physical and chemical effects of CO2. Firstly, the higher heat capacity and lower diffusion rate of O2 in O2/CO2 leads to a lower volatile release rate and decreasing flame temperature, as evidenced by the closer proximity of the flame front to the coal particle surface. The lower flame temperature and volatile release rate would reduce the number of hydrocarbon molecule (RH) and the reaction rate of RH -> hydrocarbon radical (R) + H, leading to a decrease in the concentration of OH radical from the re -action: H + O2 -> OH + O. Secondly, CO2 participates directly in H + OH + three-body (M)-> H2O + M reaction, competing with the primary OH formation pathway, H + O2 -> OH + O, for H radicals, thus suppressing the OH generation. However, when O2 concentration exceeded 40%, the tign was shorter in O2/CO2 by about 1.2-1.4 s than in O2/N2 with the same O2 concentration. Simultaneously, compared to the O2/N2, similar flame luminosity and tvol were observed in the O2/CO2. An obvious increase in OH intensity was also observed in O2/CO2. With higher O2 concentrations in the O2/CO2, the absorption and emission radiation characteristics of CO2, increased O2 diffusivity and the decreased specific heat capacity in the O2/CO2 gas mixture, synergistically facilitate temperature rise and volatile release, which promotes the generation of RH, and then increases the H concentration due to the reaction RH -> R + H. This would lead to a substantial increase in concentration of OH produced by the reaction H + O2 -> OH + O, which was detected by OH-PLIF.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Fei Pan
    Jianguo Zhu
    Jingzhang Liu
    Yuhua Liu
    Journal of Thermal Science, 2023, 32 : 2235 - 2242
  • [22] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    PAN Fei
    ZHU Jianguo
    LIU Jingzhang
    LIU Yuhua
    Journal of Thermal Science, 2023, 32 (06) : 2235 - 2242
  • [23] Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature
    Bu, Changsheng
    Liu, Daoyin
    Chen, Xiaoping
    Pallares, David
    Gomez-Barea, Alberto
    APPLIED ENERGY, 2014, 115 : 301 - 308
  • [24] Numerical Study of MILD Combustion for Pulverized Coal in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Tu, Yaojie
    Kong, Fanhai
    Su, Kai
    Liu, Hao
    Zheng, Chuguang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 157 - 163
  • [25] Ignition characteristics and alkali metal release behaviors of single-particle coal in O2/CO2 or O2/N2 atmospheres using optical diagnostic technology
    Wei, Juntao
    Li, Jinyun
    Xu, Deliang
    Zhang, Shu
    Vuthaluru, Hari
    Kontchouo, Felix Merime Bkandmo
    Huang, Ankui
    Song, Xudong
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 111
  • [26] Combustion efficiency and CO2 emission from O2/N2, O2/CO2, and O2/RFG coal combustion processes
    Chen, Jyh-Cherng
    Huang, Jian-Sheng
    ENVIRONMENTAL ENGINEERING SCIENCE, 2007, 24 (03) : 353 - 362
  • [27] Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N2/O2 and CO2/O2 atmospheres
    Tang, YuTing
    Ma, XiaoQian
    Lai, ZhiYi
    Zhou, DaoXi
    Chen, Yong
    FUEL, 2013, 104 : 508 - 514
  • [28] Ignition and combustion of single particles of coal and biomass under O2/CO2 atmospheres
    Riaza, Juan
    Ajmi, Muhammad
    Gibbins, Jon
    Chalmers, Hannah
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6067 - 6073
  • [29] Experimental Study on NO Emission Characteristics of Corn Stalk Combustion in O2/CO2 and O2/N2 Atmospheres
    Liu, Wenyong
    Gou, Xiang
    Liu, Liansheng
    Zhang, Kai
    Wu, Jinxiang
    Wang, Enyu
    PROGRESS IN MATERIALS AND PROCESSES, PTS 1-3, 2013, 602-604 : 1059 - 1063
  • [30] Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres
    Lai, ZhiYi
    Ma, XiaoQian
    Tang, YuTing
    Lin, Hai
    Chen, Yong
    BIORESOURCE TECHNOLOGY, 2012, 107 : 444 - 450