Application of annotation-agnostic RNA sequencing data analysis tools for biomarker discovery in liquid biopsy

被引:3
作者
Wajnberg, Gabriel [1 ]
Allain, Eric P. [1 ,2 ,3 ,4 ]
Roy, Jeremy W. [1 ,4 ]
Srivastava, Shruti [1 ]
Saucier, Daniel [3 ]
Morin Jr, Pier [3 ]
Marrero, Alier [5 ]
O'Connell, Colleen [6 ]
Ghosh, Anirban [1 ]
Lewis, Stephen M. [1 ,3 ,4 ]
Ouellette, Rodney J. [1 ,3 ,4 ,5 ]
Crapoulet, Nicolas [1 ]
机构
[1] Atlantic Canc Res Inst, Moncton, NB, Canada
[2] Dr Georges L Dumont Univ Hosp Ctr, Vital Hlth Network, Dept Clin Genet, Moncton, NB, Canada
[3] Univ Moncton, Dept Chem & Biochem, Moncton, NB, Canada
[4] Beatrice Hunter Canc Res Inst, Halifax, NS, Canada
[5] Dr Georges L Dumont Univ Hosp Ctr, Moncton, NB, Canada
[6] Stan Cassidy Ctr Rehabil, Fredericton, NB, Canada
来源
FRONTIERS IN BIOINFORMATICS | 2023年 / 3卷
关键词
small RNA; extracellular vesicles; annotation-agnostic; quantification algorithms; biomarkers; liquid biopsy; genetic diseases; IDENTIFICATION; MICRORNAS;
D O I
10.3389/fbinf.2023.1127661
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA sequencing analysis is an important field in the study of extracellular vesicles (EVs), as these particles contain a variety of RNA species that may have diagnostic, prognostic and predictive value. Many of the bioinformatics tools currently used to analyze EV cargo rely on third-party annotations. Recently, analysis of unannotated expressed RNAs has become of interest, since these may provide complementary information to traditional annotated biomarkers or may help refine biological signatures used in machine learning by including unknown regions. Here we perform a comparative analysis of annotation-free and classical read-summarization tools for the analysis of RNA sequencing data generated for EVs isolated from persons with amyotrophic lateral sclerosis (ALS) and healthy donors. Differential expression analysis and digital-droplet PCR validation of unannotated RNAs also confirmed their existence and demonstrates the usefulness of including such potential biomarkers in transcriptome analysis. We show that find-then-annotate methods perform similarly to standard tools for the analysis of known features, and can also identify unannotated expressed RNAs, two of which were validated as overexpressed in ALS samples. We demonstrate that these tools can therefore be used for a stand-alone analysis or easily integrated into current workflows and may be useful for re-analysis as annotations can be integrated post hoc.
引用
收藏
页数:9
相关论文
共 41 条
[1]   miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data [J].
An, Jiyuan ;
Lai, John ;
Lehman, Melanie L. ;
Nelson, Colleen C. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (02) :727-737
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression [J].
Aparicio-Puerta, Ernesto ;
Lebron, Ricardo ;
Rueda, Antonio ;
Gomez-Martin, Cristina ;
Giannoukakos, Stavros ;
Jaspez, David ;
Maria Medina, Jose ;
Zubkovic, Andreja ;
Jurak, Igor ;
Fromm, Bastian ;
Antonio Marchal, Juan ;
Oliver, Jose ;
Hackenberg, Michael .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W530-W535
[4]   ShortStack: Comprehensive annotation and quantification of small RNA genes [J].
Axtell, Michael J. .
RNA, 2013, 19 (06) :740-751
[5]   KRAS-dependent sorting of miRNA to exosomes [J].
Cha, Diana J. ;
Franklin, Jeffrey L. ;
Dou, Yongchao ;
Liu, Qi ;
Higginbotham, James N. ;
Beckler, Michelle Demory ;
Weaver, Alissa M. ;
Vickers, Kasey ;
Prasad, Nirpesh ;
Levy, Shawn ;
Zhang, Bing ;
Coffey, Robert J. ;
Patton, James G. .
ELIFE, 2015, 4 :22
[6]   Flexible expressed region analysis for RNA-seq with derfinder [J].
Collado-Torres, Leonardo ;
Nellore, Abhinav ;
Frazee, Alyssa C. ;
Wilks, Christopher ;
Love, Michael I. ;
Langmead, Ben ;
Irizarry, Rafael A. ;
Leek, Jeffrey T. ;
Jaffe, Andrew E. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (02) :e9
[7]   Polyester: simulating RNA-seq datasets with differential transcript expression [J].
Frazee, Alyssa C. ;
Jaffe, Andrew E. ;
Langmead, Ben ;
Leek, Jeffrey T. .
BIOINFORMATICS, 2015, 31 (17) :2778-2784
[8]   Discovering microRNAs from deep sequencing data using miRDeep [J].
Friedlaender, Marc R. ;
Chen, Wei ;
Adamidi, Catherine ;
Maaskola, Jonas ;
Einspanier, Ralf ;
Knespel, Signe ;
Rajewsky, Nikolaus .
NATURE BIOTECHNOLOGY, 2008, 26 (04) :407-415
[9]   miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades [J].
Friedlaender, Marc R. ;
Mackowiak, Sebastian D. ;
Li, Na ;
Chen, Wei ;
Rajewsky, Nikolaus .
NUCLEIC ACIDS RESEARCH, 2012, 40 (01) :37-52
[10]   Current and future perspectives of liquid biopsies in genomics-driven oncology [J].
Heitzer, Ellen ;
Haque, Imran S. ;
Roberts, Charles E. S. ;
Speicher, Michael R. .
NATURE REVIEWS GENETICS, 2019, 20 (02) :71-88