WILD AUTOMORPHISMS OF COMPACT COMPLEX SPACES OF LOWER DIMENSIONS

被引:0
作者
Jia, Jia [1 ,2 ]
Wang, Long [3 ,4 ]
机构
[1] Natl Univ Singapore, Singapore 119076, Singapore
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
[4] Univ Tokyo, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
关键词
Wild automorphism; complex torus; Inoue surface; entropy; SURFACES;
D O I
10.1090/proc/16560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An automorphism of a compact complex space is called wild in the sense of Reichstein-Rogalski-Zhang if there is no non-trivial proper invariant analytic subset. We show that a compact complex surface admitting a wild automorphism is either a complex torus or an Inoue surface of certain type, and this wild automorphism has zero entropy. As a by-product of our argument, we obtain new results about the automorphism groups of Inoue surfaces. We also study wild automorphisms of compact Ka & BULL;hler threefolds or fourfolds, and generalise the results of Oguiso-Zhang from the projective case to the Ka & BULL;hler case.
引用
收藏
页码:5117 / 5137
页数:21
相关论文
共 33 条
[1]  
BARTH WP, 2004, COMPACT COMPLEX SURF
[2]  
Beauville A., 1983, Progr. Math., V39, P1
[3]  
BOGOMOLOV FA, 1976, MATH USSR IZV+, V10, P255, DOI 10.1070/IM1976v010n02ABEH001688
[4]   On the volume of a line bundle [J].
Boucksom, S .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2002, 13 (10) :1043-1063
[5]   A positivity property for foliations on compact Kahler manifolds [J].
Brunella, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (01) :35-43
[6]   On the dynamics of automorphisms of complex projective surfaces [J].
Cantat, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10) :901-906
[7]   Free actions of large groups on complex threefolds [J].
Cantat, Serge ;
Paris-Romaskevich, Olga ;
Xie, Junyi .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (05) :1791-1803
[8]   AUTOMORPHISMS OF COMPACT KAHLER MANIFOLDS WITH SLOW DYNAMICS [J].
Cantat, Serge ;
Paris-Romaskevich, Olga .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) :1351-1389
[9]  
Cao JY, 2020, J DIFFER GEOM, V114, P1
[10]   Equidistribution problems in complex dynamics of higher dimension [J].
Dinh, Tien-Cuong ;
Sibony, Nessim .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)