Identifying and Predicting Postoperative Infections Based on Readily Available Electronic Health Record Data

被引:2
作者
van der Meijden, Siri Lise [1 ,2 ]
van Boekel, Anna [2 ]
Schinkelshoek, Laurens [1 ]
van Goor, Harry [3 ]
de Boer, Mark [2 ]
Steyerberg, Ewout [2 ]
Geerts, Bart [1 ]
Arbous, Sesmu [2 ]
机构
[1] Healthplus Ai, Amsterdam, Netherlands
[2] Leiden Univ, Med Ctr, Leiden, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Nijmegen, Netherlands
来源
CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023 | 2023年 / 302卷
关键词
Artificial Intelligence; Prediction; Postoperative infections; Electronic Health Record;
D O I
10.3233/SHTI230134
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identification of postoperative infections based on retrospective patient data is currently done using manual chart review. We used a validated, automated labelling method based on registrations and treatments to develop a high-quality prediction model (AUC 0.81) for postoperative infections.
引用
收藏
页码:348 / 349
页数:2
相关论文
共 2 条
[1]  
Pearse RM, 2017, BRIT J ANAESTH, V119, P553, DOI [10.1093/bja/aew472, 10.1093/bja/aew316]
[2]   Registration of surgical adverse outcomes: a reliability study in a university hospital [J].
Ubbink, Dirk T. ;
Visser, Annelies ;
Gouma, Dirk J. ;
Goslings, J. Carel .
BMJ OPEN, 2012, 2 (03)