Prototype Completion for Few-Shot Learning

被引:13
作者
Zhang, Baoquan [1 ]
Li, Xutao [1 ]
Ye, Yunming [1 ]
Feng, Shanshan [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-Shot learning; image classification; meta-learning; CLASSIFICATION;
D O I
10.1109/TPAMI.2023.3277881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning (FSL) aims to recognize novel classes with few examples. Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes marginal improvements. In this paper, 1) we figure out the reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning feature extractor, we focus on estimating more representative prototypes. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative features for seen attributes as priors. Second, a part/attribute transfer network is designed to learn to infer the representative features for unseen attributes as supplementary priors. Finally, a prototype completion network is devised to learn to complete prototypes with these priors. Moreover, to avoid the prototype completion error, we further develop a Gaussian based prototype fusion strategy that fuses the mean-based and completed prototypes by exploiting the unlabeled samples. At last, we also develop an economic prototype completion version for FSL, which does not need to collect primitive knowledge, for a fair comparison with existing FSL methods without external knowledge. Extensive experiments show that our method: i) obtains more accurate prototypes; ii) achieves superior performance on both inductive and transductive FSL settings.
引用
收藏
页码:12250 / 12268
页数:19
相关论文
共 93 条
[1]   Associative Alignment for Few-Shot Image Classification [J].
Afrasiyabi, Arman ;
Lalonde, Jean-Francois ;
Gagne, Christian .
COMPUTER VISION - ECCV 2020, PT V, 2020, 12350 :18-35
[2]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[3]  
[Anonymous], 2014, P 2014 C EMP METH NA, DOI DOI 10.3115/V1/D14-1162
[4]  
Baik S., 2020, P INT C NEUR INF PRO, P1532
[5]  
Banik S, 2018, Arxiv, DOI arXiv:1811.04309
[6]   Improved Few-Shot Visual Classification [J].
Bateni, Peyman ;
Goyal, Raghav ;
Masrani, Vaden ;
Wood, Frank ;
Sigal, Leonid .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :14481-14490
[7]  
Boudiaf M, 2020, ADV NEUR IN, V33
[8]  
Braytee A., 2021, P INT JOINT C NEUR N, P1
[9]   Synthesized Classifiers for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Gong, Boqing ;
Sha, Fei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5327-5336
[10]   ECKPN: Explicit Class Knowledge Propagation Network for Transductive Few-shot Learning [J].
Chen, Chaofan ;
Yang, Xiaoshan ;
Xu, Changsheng ;
Huang, Xuhui ;
Ma, Zhe .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :6592-6601