Deep Learning for the Estimation of the Longitudinal Slip Ratio

被引:9
|
作者
Marotta, Raffaele [1 ]
Ivanov, Valentin [2 ]
Strano, Salvatore [1 ]
Terzo, Mario [1 ]
Tordela, Ciro [1 ]
机构
[1] Univ Naples Federico II, Dept Ind Engn, Naples, Italy
[2] Tech Univ Ilmenau, Automot Engn Grp, Ilmenau, Germany
来源
2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AUTOMOTIVE, METROAUTOMOTIVE | 2023年
关键词
Longitudinal Slip Ratio; Artificial Intelligence; Deep Learning; Machine Learning; Neural Network; Virtual Sensor; VEHICLE; OBSERVER;
D O I
10.1109/MetroAutomotive57488.2023.10219139
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In a road vehicle, the interaction forces between tire and road are strongly influenced by the longitudinal slip ratio. This kinematic quantity, therefore, represents one of the most important in the study of vehicle dynamics. The real-time knowledge of this quantity can allow the estimation of the interaction forces and the development of control systems to improve safety and handling. In particular, Anti-lock Braking Systems (ABS) and Traction Control Systems (TCS). Direct measurements of this quantity would require the insertion of sensors inside the tire, with consequent manufacturing complexity and increased costs. This paper proposes an estimate of the longitudinal slip ratio based on other easily measurable or estimable quantities. This estimator makes use of Neural Networks and is based on preliminary physical considerations.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [41] A Deep Learning Pipeline for Longitudinal Image Registration Using Fundus Landmarks
    Veturi, Yoga Advaith
    Mcnamara, Steve
    Kinder, Scott
    Clark, Christopher William
    Thakuria, Upasana
    Bearce, Benjamin
    Manoharan, Niranjan
    Mandava, Naresh
    Kahook, Malik Y.
    Singh, Praveer
    Kalpathy-Cramer, Jayashree
    OPHTHALMOLOGY SCIENCE, 2025, 5 (02):
  • [42] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Cascarano, Anna
    Mur-Petit, Jordi
    Hernandez-Gonzalez, Jeronimo
    Camacho, Marina
    Eadie, Nina de Toro
    Gkontra, Polyxeni
    Chadeau-Hyam, Marc
    Vitria, Jordi
    Lekadir, Karim
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 1711 - 1771
  • [43] Deep learning for finance: deep portfolios
    Heaton, J. B.
    Polson, N. G.
    Witte, J. H.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (01) : 3 - 12
  • [44] DEEPLOOP: DEEP Learning for an Optimized adaptive Optics Psf estimation
    Gray, Morgan
    Dumont, Maxime
    Beltramo-Martin, Olivier
    Lambert, Jean -Charles
    Neichel, Benoit
    Fusco, Thierry
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [45] Underwater Sound Source Range Estimation Based on Deep Learning
    Qu, Yuchen
    Huang, Yiqian
    Ren, Xinmin
    Chen, Yang
    Han, Tianshun
    OCEANS 2024 - SINGAPORE, 2024,
  • [46] Using Deep Learning for Glacier Thickness Estimation at a Regional Scale
    Uroz, Lorenzo Lopez
    Yan, Yajing
    Benoit, Alexandre
    Rabatel, Antoine
    Giffard-Roisin, Sophie
    Lin-Kwong-Chon, Christophe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [47] Survival estimation of oral cancer using fuzzy deep learning
    Somyanonthanakul, Rachasak
    Warin, Kritsasith
    Chaowchuen, Sitthi
    Jinaporntham, Suthin
    Panichkitkosolkul, Wararit
    Suebnukarn, Siriwan
    BMC ORAL HEALTH, 2024, 24 (01):
  • [48] Age and Gender Estimation using Deep Residual Learning Network
    Lee, Seok Hee
    Hosseini, Sepidehsadat
    Kwon, Hyuk Jin
    Moon, Jaewon
    Koo, Hyung Il
    Cho, Nam Ik
    2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [49] Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation
    Zhan, Geng
    Wang, Dongang
    Cabezas, Mariano
    Bai, Lei
    Kyle, Kain
    Ouyang, Wanli
    Barnett, Michael
    Wang, Chenyu
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [50] ModelRevelator: Fast phylogenetic model estimation via deep learning
    Burgstaller-Muehlbacher, Sebastian
    Crotty, Stephen M.
    Schmidt, Heiko A.
    Reden, Franziska
    Drucks, Tamara
    von Haeseler, Arndt
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2023, 188