Deep Learning for the Estimation of the Longitudinal Slip Ratio

被引:9
|
作者
Marotta, Raffaele [1 ]
Ivanov, Valentin [2 ]
Strano, Salvatore [1 ]
Terzo, Mario [1 ]
Tordela, Ciro [1 ]
机构
[1] Univ Naples Federico II, Dept Ind Engn, Naples, Italy
[2] Tech Univ Ilmenau, Automot Engn Grp, Ilmenau, Germany
来源
2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AUTOMOTIVE, METROAUTOMOTIVE | 2023年
关键词
Longitudinal Slip Ratio; Artificial Intelligence; Deep Learning; Machine Learning; Neural Network; Virtual Sensor; VEHICLE; OBSERVER;
D O I
10.1109/MetroAutomotive57488.2023.10219139
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In a road vehicle, the interaction forces between tire and road are strongly influenced by the longitudinal slip ratio. This kinematic quantity, therefore, represents one of the most important in the study of vehicle dynamics. The real-time knowledge of this quantity can allow the estimation of the interaction forces and the development of control systems to improve safety and handling. In particular, Anti-lock Braking Systems (ABS) and Traction Control Systems (TCS). Direct measurements of this quantity would require the insertion of sensors inside the tire, with consequent manufacturing complexity and increased costs. This paper proposes an estimate of the longitudinal slip ratio based on other easily measurable or estimable quantities. This estimator makes use of Neural Networks and is based on preliminary physical considerations.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [31] A Robust Deep Learning Model for Terrain Slope Estimation
    Alorf, Abdulaziz
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1231 - 1245
  • [32] Bacterial colony size growth estimation by deep learning
    Nagy S.Á.
    Makrai L.
    Csabai I.
    Tőzsér D.
    Szita G.
    Solymosi N.
    BMC Microbiology, 23 (1)
  • [33] Machine learning and deep learning
    Janiesch, Christian
    Zschech, Patrick
    Heinrich, Kai
    ELECTRONIC MARKETS, 2021, 31 (03) : 685 - 695
  • [34] Machine learning and deep learning
    Christian Janiesch
    Patrick Zschech
    Kai Heinrich
    Electronic Markets, 2021, 31 : 685 - 695
  • [35] A Review on Multiscale-Deep-Learning Applications
    Elizar, Elizar
    Zulkifley, Mohd Asyraf
    Muharar, Rusdha
    Zaman, Mohd Hairi Mohd
    Mustaza, Seri Mastura
    SENSORS, 2022, 22 (19)
  • [36] Deep learning for solving dynamic economic models
    Maliar, Lilia
    Maliar, Serguei
    Winant, Pablo
    JOURNAL OF MONETARY ECONOMICS, 2021, 122 : 76 - 101
  • [37] Translational AI and Deep Learning in Diagnostic Pathology
    Serag, Ahmed
    Ion-Margineanu, Adrian
    Qureshi, Hammad
    McMillan, Ryan
    Saint Martin, Marie-Judith
    Diamond, Jim
    O'Reilly, Paul
    Hamilton, Peter
    FRONTIERS IN MEDICINE, 2019, 6
  • [38] Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications
    D'Angelo, Tommaso
    Caudo, Danilo
    Blandino, Alfredo
    Albrecht, Moritz H.
    Vogl, Thomas J.
    Gruenewald, Leon D.
    Gaeta, Michele
    Yel, Ibrahim
    Koch, Vitali
    Martin, Simon S.
    Lenga, Lukas
    Muscogiuri, Giuseppe
    Sironi, Sandro
    Mazziotti, Silvio
    Booz, Christian
    JOURNAL OF CLINICAL ULTRASOUND, 2022, 50 (09) : 1414 - 1431
  • [39] Stenosis Detection and Quantification of Coronary Artery Using Machine Learning and Deep Learning
    Zhang, Xinhong
    Zhang, Boyan
    Zhang, Fan
    ANGIOLOGY, 2024, 75 (05) : 405 - 416
  • [40] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Anna Cascarano
    Jordi Mur-Petit
    Jerónimo Hernández-González
    Marina Camacho
    Nina de Toro Eadie
    Polyxeni Gkontra
    Marc Chadeau-Hyam
    Jordi Vitrià
    Karim Lekadir
    Artificial Intelligence Review, 2023, 56 : 1711 - 1771