共 66 条
Rheological studies of nanocomposites based on hydrolyzed polyacrylamide with silica and alumina in saline media to enhance oil recovery
被引:2
作者:
Mohammadpour, Mohammad Reza
[1
]
Hassanajili, Shadi
[1
]
机构:
[1] Shiraz Univ, Sch Chem & Petr Engn, Dept Chem Engn, Shiraz 7134851154, Iran
关键词:
Alumina nanoparticles;
Enhance oil recovery;
High temperature and salinity;
Polyacrylamide;
Rheological properties;
Silica nanoparticles;
HEAVY OIL;
INTERFACIAL RHEOLOGY;
SURFACTANT;
NANOPARTICLES;
COPOLYMERS;
STABILITY;
EOR;
SPECTROSCOPY;
TEMPERATURE;
NANOFLUIDS;
D O I:
10.1016/j.molliq.2023.122855
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Many nanoparticles such as silicon dioxide (SiO2) and aluminum oxide (Al2O3) have been recently proposed to increase the performance of water-soluble polymers for use in oil recovery (EOR). However, nanoparticles in nanocomposites tend to precipitate, agglomerate, or even precipitate under harsh conditions such as hightemperature and high-salinity (HT-HS), which reduces their potential for field applications. In this work, silica and alumina nanoparticles were modified with 3-methoxysilyl-propyl-methacrylate (TMS) coupling agent containing a vinyl group to enhance better dispersibility in reaction media and much stronger adhesion with the polymer. Then, acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) monomers were copolymerized in the presence of modified NPs via radical polymerization and were covalently bound to the NPs. In this study, the effect of AM/AMPS ratio and alumina as well silica loading amount on thermal stability, rheological properties and aging of composite solution was investigated and compared with commercial HPAM used for EOR. Results depicted that used method of synthesis could improve the rheological properties and better dispersion of nanoparticles in the polymer. It was found that the modified nanoparticles reduced the thermal degradation of the polymer and protect its original structure when compared to the neat copolymer. After 30 days of aging, the loss of viscosity in PAMS and HPAM was approximately 46% and 75% while PAMS10-Silica2% and PAMS10-Alumina2% exhibited a viscosity loss of 27%.
引用
收藏
页数:16
相关论文