Ammonia-based hybrid chemisorption-compression heat pump for high-temperature heating

被引:6
|
作者
Xie, Xiangyu [1 ]
Jin, Shengxiang [1 ]
Gao, Peng [1 ]
Wu, Weidong [1 ]
Yang, Qiguo [1 ]
Wang, Liwei [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Key Lab Power Machinery & Engn, Minist Educ, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemisorption heat pump; Hybrid cycle; High-temperature heating; Regulation strategy; Waste heat recovery; WATER-VAPOR COMPRESSION; WASTE HEAT; SYSTEM; REFRIGERANTS; RECOVERY; STATE;
D O I
10.1016/j.applthermaleng.2023.121081
中图分类号
O414.1 [热力学];
学科分类号
摘要
Conventional compression heat pumps employing natural refrigerant of ammonia can barely meet the requirement of high-temperature heating above 90 & DEG;C, while ammonia-based chemisorption heat transformers characterised by high-temperature heating require driving heat source temperature above 80 & DEG;C. To address these issues, a novel ammonia-based hybrid chemisorption-compression high-temperature heat pump employing SrCl2NH3 as the working pair is designed and established in this paper. Particularly, a conventional normal temperature compressor instead of an expensive high-pressure ammonia compressor can be adopted to upgrade the abundant 50-80 & DEG;C waste heat to 90-120 & DEG;C high-temperature heat. Simultaneously, due to that chemisorption reaction heat is larger than condensing heat of refrigerant, this heat pump has significant potential for improving coefficient of performance (COP). For the first time, regulation strategies of key parameters such as sorption pressure, desorption pressure, and sorption reaction exothermic time are proposed, and these provide the theoretical support for the stable and efficient operation of the heat pump. Moreover, its performance is evaluated by varying operating conditions. The results indicate that at heat output temperature of 100 & DEG;C, the optimal sorption pressure and reaction exothermic time are 1.70 MPa and 22 min, respectively. At waste heat temperature of 70 & DEG;C and heat output temperature of 110 & DEG;C, the COP of the heat pump is 4.58, i.e., its efficiency is 14.5% more than that of R245fa compression one.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] HIGH-TEMPERATURE HEAT PUMP INTEGRATION INTO DISTRICT HEATING SYSTEM
    Jakovleva, Ludmila
    20TH INTERNATIONAL SCIENTIFIC CONFERENCE ENGINEERING FOR RURAL DEVELOPMENT, 2021, : 1312 - 1316
  • [2] Investigation of a High-Temperature Heat Pump for Heating Purposes
    Bellos, Evangelos
    Tsimpoukis, Dimitrios
    Lykas, Panagiotis
    Kitsopoulou, Angeliki
    Korres, Dimitrios N.
    Vrachopoulos, Michail Gr.
    Tzivanidis, Christos
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [3] Analysis of a New Super High Temperature Hybrid Absorption-Compression Heat Pump Cycle
    Sun, Jian
    Wang, Yinwu
    Wu, Kexin
    Ge, Zhihua
    Yang, Yongping
    ENERGIES, 2022, 15 (20)
  • [4] Performance analysis of a high-temperature heat pump based on a cascaded reverse Brayton and vapor compression cycle
    Yaqteen, Mohammad Ali
    Chung, Yoong
    Song, Chan Ho
    Kim, Jin Sub
    ENERGY REPORTS, 2025, 13 : 318 - 329
  • [5] High temperature heat pump integration into district heating network
    Mateu-Royo, Carlos
    Sawalha, Samer
    Mota-Babiloni, Adrian
    Navarro-Esbri, Joaquin
    ENERGY CONVERSION AND MANAGEMENT, 2020, 210 (210)
  • [6] Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water
    Jung, Chung Woo
    Song, Joo Young
    Kang, Yong Tae
    ENERGY, 2018, 145 : 458 - 467
  • [7] A Hybrid Compression-Absorption High Temperature Heat Pump Cycles for Industrial Waste Heat Recovery
    An M.
    Zhao X.
    Xu Z.
    Wang R.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (04): : 434 - 443
  • [8] Cycle Characteristics of a New High-Temperature Heat Pump Based on Absorption-Compression Revolution
    Sun, Jian
    Qin, Yu
    Liu, Ran
    Wang, Guoshun
    Liu, Dingqun
    Yang, Yongping
    ENERGIES, 2023, 16 (11)
  • [9] District heating utilizing waste heat of a data center: High-temperature heat pumps
    Wang, Pengtao
    Kowalski, Steve
    Gao, Zhiming
    Sun, Jian
    Yang, Cheng-Min
    Grant, David
    Boudreaux, Philip
    Huff, Shean
    Nawaz, Kashif
    ENERGY AND BUILDINGS, 2024, 315
  • [10] Thermal design and optimization of high-temperature heat pump integrated with district heating benchmarked in Denmark for process heat supply
    Sadeghi, Mohsen
    Petersen, Tage
    Yang, Zhenyu
    Zuhlsdorf, Benjamin
    Madsen, Kim Stenholdt
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2024, 159 : 356 - 370