Bilinear forms with trace functions over arbitrary sets and applications to Sato-Tate

被引:1
作者
Xi, Ping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear forms; l-adic sheaves; Riemann Hypothesis over finite fields; Sato-Tate distribution; Kloosterman sums; elliptic curves; EXPONENTIAL-SUMS; KLOOSTERMAN SUMS; BOUNDS; FAMILIES;
D O I
10.1007/s11425-022-2184-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove non-trivial upper bounds for general bilinear forms with trace functions of bountiful sheaves, where the supports of two variables can be arbitrary subsets in F-p of suitable sizes. This essentially recovers the Polya-Vinogradov range, and also applies to symmetric powers of Kloosterman sums and Frobenius traces of elliptic curves. In the case of hyper-Kloosterman sums, we can beat the Polya-Vinogradov barrier by combining additive combinatorics with a deep result of Kowalski, Michel and Sawin (2017) on sum-products of Kloosterman sheaves. Two Sato-Tate distributions of Kloosterman sums and Frobenius traces of elliptic curves in sparse families are also concluded.
引用
收藏
页码:2819 / 2834
页数:16
相关论文
共 35 条
  • [1] Bounds on bilinear sums of Kloosterman sums
    Bag, Nilanjan
    Shparlinski, Igor E.
    [J]. JOURNAL OF NUMBER THEORY, 2023, 242 : 102 - 111
  • [2] Bilu Y, 1999, ASTERISQUE, P77
  • [3] BIRCH BJ, 1968, J LONDON MATH SOC, V43, P57
  • [4] A polynomial bound in Freiman's theorem
    Chang, MC
    [J]. DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) : 399 - 419
  • [5] ON A QUESTION OF DAVENPORT AND LEWIS AND NEW CHARACTER SUM BOUNDS IN FINITE FIELDS
    Chang, Mei-Chu
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 145 (03) : 409 - 442
  • [6] CHEN JR, 1975, SCI SINICA, V18, P611
  • [7] AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS
    Clozel, Laurent
    Harris, Michael
    Taylor, Richard
    [J]. PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108): : 1 - 181
  • [8] The Sato-Tate distribution in thin parametric families of elliptic curves
    de la Breteche, Regis
    Sha, Min
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 831 - 855
  • [9] Deligne P., 1980, Publications Math matiques de lInstitut des Hautes tudes Scientifiques, V52, P137, DOI DOI 10.1007/BF02684780
  • [10] On the pseudorandomness of the signs of Kloosterman sums
    Fouvry, É
    Michel, P
    Rivat, J
    Sárközy, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 77 : 425 - 436