Digital health technology in clinical trials

被引:14
作者
Mittermaier, Mirja [1 ,2 ,3 ,4 ]
Venkatesh, Kaushik P. [5 ]
Kvedar, Joseph C. [5 ]
机构
[1] Charite Univ Med Berlin, Dept Infect Dis Resp Med & Crit Care, Berlin, Germany
[2] Free Univ Berlin, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Charitepl 1, D-10117 Berlin, Germany
[5] Harvard Med Sch, Boston, MA USA
关键词
Compendex;
D O I
10.1038/s41746-023-00841-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Digital health technologies (DHTs) have brought several significant improvements to clinical trials, enabling real-world data collection outside of the traditional clinical context and more patient-centered approaches. DHTs, such as wearables, allow the collection of unique personal data at home over a long period. But DHTs also bring challenges, such as digital endpoint harmonization and disadvantaging populations already experiencing the digital divide. A recent study explored the growth trends and implications of established and novel DHTs in neurology trials over the past decade. Here, we discuss the benefits and future challenges of DHT usage in clinical trials.
引用
收藏
页数:2
相关论文
共 22 条
  • [1] Adamo Joan E, 2020, Digit Biomark, V4, P1, DOI 10.1159/000505289
  • [2] Security, Privacy, and Usability in Continuous Authentication: A Survey
    Baig, Ahmed Fraz
    Eskeland, Sigurd
    [J]. SENSORS, 2021, 21 (17)
  • [3] Data quality evaluation in wearable monitoring
    Boettcher, Sebastian
    Vieluf, Solveig
    Bruno, Elisa
    Joseph, Boney
    Epitashvili, Nino
    Biondi, Andrea
    Zabler, Nicolas
    Glasstetter, Martin
    Duempelmann, Matthias
    Van Laerhoven, Kristof
    Nasseri, Mona
    Brinkman, Benjamin H.
    Richardson, Mark P.
    Schulze-Bonhage, Andreas
    Loddenkemper, Tobias
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices by US Adults: Insights from a National Survey
    Chandrasekaran, Ranganathan
    Katthula, Vipanchi
    Moustakas, Evangelos
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (10)
  • [5] Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency
    Cutillo, Christine M.
    Sharma, Karlie R.
    Foschini, Luca
    Kundu, Shinjini
    Mackintosh, Maxine
    Mandl, Kenneth D.
    Beck, Tyler
    Collier, Elaine
    Colvis, Christine
    Gersing, Kenneth
    Gordon, Valery
    Jensen, Roxanne
    Shabestari, Behrouz
    Southall, Noel
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [6] Empowering clinical research in a decentralized world
    De Brouwer, Walter
    Patel, Chirag J.
    Manrai, Arjun K.
    Rodriguez-Chavez, Isaac R.
    Shah, Nirav R.
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [7] Use of High-Frequency In-Home Monitoring Data May Reduce Sample Sizes Needed in Clinical Trials
    Dodge, Hiroko H.
    Zhu, Jian
    Mattek, Nora C.
    Austin, Daniel
    Kornfeld, Judith
    Kaye, Jeffrey A.
    [J]. PLOS ONE, 2015, 10 (09):
  • [8] FDA, 2021, DIG HLTH TECHN REM D
  • [9] BioMeT and Algorithm Challenges: A Proposed Digital Standardized Evaluation Framework
    Godfrey, Alan
    Goldsack, Jennifer C.
    Tenaerts, Pamela
    Coravos, Andrea
    Aranda, Clara
    Hussain, Azid
    Barreto, Marcos E.
    Young, Fraser
    Vitorio, Rodrigo
    [J]. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2020, 8 (08):
  • [10] Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs)
    Goldsack, Jennifer C.
    Coravos, Andrea
    Bakker, Jessie P.
    Bent, Brinnae
    Dowling, Ariel V.
    Fitzer-Attas, Cheryl
    Godfrey, Alan
    Godino, Job G.
    Gujar, Ninad
    Izmailova, Elena
    Manta, Christine
    Peterson, Barry
    Vandendriessche, Benjamin
    Wood, William A.
    Wang, Ke Will
    Dunn, Jessilyn
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)