Stratified Multivariate Multiscale Dispersion Entropy for Physiological Signal Analysis

被引:9
作者
Kafantaris, Evangelos [1 ]
Lo, Tsz-Yan Milly [2 ,3 ]
Escudero, Javier [4 ]
机构
[1] Univ Edinburgh, Inst Digital Commun, Sch Engn, Edinburgh EH9 3FB, Scotland
[2] Univ Edinburgh, Usher Inst, Ctr Med Informat, Edinburgh, Scotland
[3] Royal Hosp Children & Young People, Edinburgh, Scotland
[4] Univ Edinburgh, Inst Digital Commun, Sch Engn, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Entropy; Dispersion; Heuristic algorithms; Biomedical monitoring; Physiology; Complexity theory; Dynamic scheduling; Multivariate Signals; Stratified Entropy; Non-linear; Multiscale; Dispersion Entropy; Heterogeneous Systems; APPROXIMATE ENTROPY; PERMUTATION ENTROPY; COMPLEXITY ANALYSIS; SAMPLE ENTROPY; HEALTH; DYNAMICS; DISEASE;
D O I
10.1109/TBME.2022.3207582
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multivariate entropy quantification algorithms are becoming a prominent tool for the extraction of information from multi-channel physiological time-series. However, in the analysis of physiological signals from heterogeneous organ systems, certain channels may overshadow the patterns of others, resulting in information loss. Here, we introduce the framework of Stratified Entropy to prioritize each channels' dynamics based on their allocation to respective strata, leading to a richer description of the multi-channel time-series. As an implementation of the framework, three algorithmic variations of the Stratified Multivariate Multiscale Dispersion Entropy are introduced. These variations and the original algorithm are applied to synthetic time-series, waveform physiological time-series, and derivative physiological data. Based on the synthetic time-series experiments, the variations successfully prioritize channels following their strata allocation while maintaining the low computation time of the original algorithm. In experiments on waveform physiological time-series and derivative physiological data, increased discrimination capacity was noted for multiple strata allocations in the variations when benchmarked to the original algorithm. This suggests improved physiological state monitoring by the variations. Furthermore, our variations can be modified to utilize a priori knowledge for the stratification of channels. Thus, our research provides a novel approach for the extraction of previously inaccessible information from multi-channel time series acquired from heterogeneous systems.
引用
收藏
页码:1024 / 1035
页数:12
相关论文
共 67 条
[1]   Multivariate Multiscale Entropy Analysis [J].
Ahmed, Mosabber Uddin ;
Mandic, Danilo P. .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (02) :91-94
[2]   Multivariate multiscale entropy: A tool for complexity analysis of multichannel data [J].
Ahmed, Mosabber Uddin ;
Mandic, Danilo P. .
PHYSICAL REVIEW E, 2011, 84 (06)
[3]   Multivariate Multiscale Dispersion Entropy of Biomedical Times Series [J].
Azami, Hamed ;
Fernandez, Alberto ;
Escudero, Javier .
ENTROPY, 2019, 21 (09)
[4]   Amplitude- and Fluctuation-Based Dispersion Entropy [J].
Azami, Hamed ;
Escudero, Javier .
ENTROPY, 2018, 20 (03)
[5]   Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy [J].
Azami, Hamed ;
Escudero, Javier .
ENTROPY, 2018, 20 (02)
[6]   Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals [J].
Azami, Hamed ;
Escudero, Javier .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 :261-276
[7]  
Azami H, 2016, IEEE ENG MED BIO, P3761, DOI 10.1109/EMBC.2016.7591546
[8]   Missing data resilient decision-making for healthcare IoT through personalization: A case study on maternal health [J].
Azimi, Iman ;
Pahikkala, Tapio ;
Rahmani, Amir M. ;
Niela-Vilen, Hannakaisa ;
Axelin, Anna ;
Liljeberg, Pasi .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 96 :297-308
[9]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[10]   Physiological Network Is Disrupted in Severe COVID-19 [J].
Barajas-Martinez, Antonio ;
Mehta, Roopa ;
Ibarra-Coronado, Elizabeth ;
Fossion, Ruben ;
Martinez Garces, Vania J. ;
Arellano, Monserrat Ramirez ;
Gonzalez Alvarez, Ibar A. ;
Bautista, Yamilet Viana Moncada ;
Bello-Chavolla, Omar Y. ;
Pedraza, Natalia Ramirez ;
Encinas, Bethsabel Rodriguez ;
Carrion, Carolina Isabel Perez ;
avila, Maria Isabel Jasso ;
Valladares-Garcia, Jorge Carlos ;
Vanegas-Cedillo, Pablo Esteban ;
Juarez, Diana Hernandez ;
Vargas-Vazquez, Arsenio ;
Antonio-Villa, Neftali Eduardo ;
Almeda-Valdes, Paloma ;
Resendis-Antonio, Osbaldo ;
Hiriart, Marcia ;
Frank, Alejandro ;
Aguilar-Salinas, Carlos A. ;
Rivera, Ana Leonor .
FRONTIERS IN PHYSIOLOGY, 2022, 13