Continuum limit of 2D fractional nonlinear Schrodinger equation

被引:1
作者
Choi, Brian [1 ]
Aceves, Alejandro [1 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
Continuum limit; Fractional equation; Lattice system; NLS; DISPERSIVE PROPERTIES; CONVERGENCE; SCHEMES;
D O I
10.1007/s00028-023-00881-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the solutions to the discrete nonlinear Schrodinger equation with non-local algebraically decaying coupling converge strongly in L-2(R-2) to those of the continuum fractional nonlinear Schrodinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter a ? (1, 2) approaches the boundaries.
引用
收藏
页数:35
相关论文
共 32 条
  • [31] Stein E. M., 1993, HARMONIC ANAL REAL V, V43
  • [32] Varchenko A.N., 1976, Funct. Anal. Appl., V18, P175, DOI 10.1007/BF01075524