Continuum limit of 2D fractional nonlinear Schrodinger equation

被引:1
作者
Choi, Brian [1 ]
Aceves, Alejandro [1 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
Continuum limit; Fractional equation; Lattice system; NLS; DISPERSIVE PROPERTIES; CONVERGENCE; SCHEMES;
D O I
10.1007/s00028-023-00881-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the solutions to the discrete nonlinear Schrodinger equation with non-local algebraically decaying coupling converge strongly in L-2(R-2) to those of the continuum fractional nonlinear Schrodinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter a ? (1, 2) approaches the boundaries.
引用
收藏
页数:35
相关论文
共 32 条
  • [1] The Klein Gordon equation on Z2 and the quantum harmonic lattice
    Borovyk, Vita
    Goldberg, Michael
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06): : 667 - 696
  • [2] Blowup for fractional NLS
    Boulenger, Thomas
    Himmelsbach, Dominik
    Lenzmann, Enno
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2569 - 2603
  • [3] REMARKS ON SOME DISPERSIVE ESTIMATES
    Cho, Yonggeun
    Ozawa, Tohru
    Xia, Suxia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1121 - 1128
  • [4] Choi B., 2022, PARTIAL DIFFERENTIAL
  • [5] Sharp time decay estimates for the discrete Klein-Gordon equation
    Cuenin, Jean-Claude
    Ikromov, Isroil A.
    [J]. NONLINEARITY, 2021, 34 (11) : 7938 - 7962
  • [6] Dinh V.D, 2018, ARXIV
  • [7] Grande R, 2024, Arxiv, DOI arXiv:1910.05681
  • [8] Stability of Oscillatory Integral Asymptotics in Two Dimensions
    Greenblatt, Michael
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 417 - 444
  • [9] The asymptotic behavior of degenerate oscillatory integrals in two dimensions
    Greenblatt, Michael
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) : 1759 - 1798
  • [10] The topological origin of the Peierls-Nabarro barrier
    Hocking, Brook J.
    Ansell, Helen S.
    Kamien, Randall D.
    Machon, Thomas
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):