A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates

被引:19
作者
Rashnooie, R. [1 ]
Zeinoddini, M. [1 ]
Ahmadpour, F. [1 ]
Aval, S. B. Beheshti [1 ]
Chen, T. [2 ]
机构
[1] KN Toosi Univ Technol, Fac Civil Engn, Tehran, Iran
[2] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
关键词
Extended finite element method (XFEM); Fatigue crack growth (FCG); Fibre reinforced polymer (FRP); Bridging; Delamination; FINITE-ELEMENT-METHOD; STEEL PLATES; ALUMINUM PANELS; COMPOSITE PATCH; PROPAGATION; BEHAVIOR; PERFORMANCE; PREDICTION; DAMAGE; LIFE;
D O I
10.1016/j.engfracmech.2022.109017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper proposes an extended finite element method (XFEM) modelling approach coupled with cyclic damage mechanics criteria to simulate the fatigue crack growth (FCG), progressive delamination, and bridging in metal-fibre reinforced polymer (FRP) composites. The FCG in the metal is described using linear elastic fracture mechanics. The cycle-by-cycle degradation of the adhesive layer, progressive damage in the FRP layers, and metal-FRP interface delamination are modelled using the damage mechanics criteria. The proposed XFEM model successfully simulates the fatigue behaviour of FRP-strengthened metallic plates. The FCG rates, crack trajectories, fatigue lives, and failure modes satisfactorily agree with the corresponding experimental data.
引用
收藏
页数:25
相关论文
共 50 条
[41]   Bridging cell multiscale modeling of fatigue crack growth in fcc crystals [J].
Iacobellis, Vincent ;
Behdinan, Kamran .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (13) :1200-1216
[42]   Fibre bridging effect on the Paris relation for mode I fatigue delamination growth in composites with consideration of interface configuration [J].
Yao, Liaojun ;
Sun, Yi ;
Alderliesten, R. C. ;
Benedictus, R. ;
Zhao, Meiying .
COMPOSITE STRUCTURES, 2017, 159 :471-478
[43]   A new model characterizing the fatigue delamination growth in DCB laminates with combined effects of fiber bridging and stress ratio [J].
Jiang, Linfei ;
Zhang, Yongxiang ;
Gong, Yu ;
Li, Wangchang ;
Ren, Sue ;
Liu, Hao .
COMPOSITE STRUCTURES, 2021, 268
[44]   Crack propagation prediction of double-edged cracked steel beams strengthened with FRP plates [J].
Wang, Hai-Tao ;
Wu, Gang .
THIN-WALLED STRUCTURES, 2018, 127 :459-468
[45]   MATHEMATICAL MODELLING AND SIMULATION OF DELAMINATION CRACK GROWTH IN GLASS FIBER REINFORCED PLASTIC (GFRP) COMPOSITE LAMINATES [J].
Ijaz, Hassan .
JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2019, 57 (01) :17-26
[46]   Experimental approach for mixed-mode fatigue delamination crack growth with large-scale bridging in polymer composites [J].
Holmes, John W. ;
Liu, Liu ;
Sorensen, Bent F. ;
Wahlgren, Soren .
JOURNAL OF COMPOSITE MATERIALS, 2014, 48 (25) :3111-3128
[47]   Delamination and transverse crack growth prediction for laminated composite plates and shells [J].
Li, D. H. .
COMPUTERS & STRUCTURES, 2016, 177 :39-55
[48]   Modelling fatigue crack propagation of a cracked metallic member reinforced by composite patches [J].
Wang, Rong ;
Nussbaumer, A. .
ENGINEERING FRACTURE MECHANICS, 2009, 76 (09) :1277-1287
[49]   Fatigue crack growth in steel beams strengthened by CFRP strips [J].
Colombi, Pierluigi ;
Fava, Giulia .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2016, 85 :173-182
[50]   Multiscale fatigue crack growth modelling for welded stiffened panels [J].
Bozic, Z. ;
Schmauder, S. ;
Mlikota, M. ;
Hummel, M. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (09) :1043-1054