A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates

被引:18
作者
Rashnooie, R. [1 ]
Zeinoddini, M. [1 ]
Ahmadpour, F. [1 ]
Aval, S. B. Beheshti [1 ]
Chen, T. [2 ]
机构
[1] KN Toosi Univ Technol, Fac Civil Engn, Tehran, Iran
[2] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
关键词
Extended finite element method (XFEM); Fatigue crack growth (FCG); Fibre reinforced polymer (FRP); Bridging; Delamination; FINITE-ELEMENT-METHOD; STEEL PLATES; ALUMINUM PANELS; COMPOSITE PATCH; PROPAGATION; BEHAVIOR; PERFORMANCE; PREDICTION; DAMAGE; LIFE;
D O I
10.1016/j.engfracmech.2022.109017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper proposes an extended finite element method (XFEM) modelling approach coupled with cyclic damage mechanics criteria to simulate the fatigue crack growth (FCG), progressive delamination, and bridging in metal-fibre reinforced polymer (FRP) composites. The FCG in the metal is described using linear elastic fracture mechanics. The cycle-by-cycle degradation of the adhesive layer, progressive damage in the FRP layers, and metal-FRP interface delamination are modelled using the damage mechanics criteria. The proposed XFEM model successfully simulates the fatigue behaviour of FRP-strengthened metallic plates. The FCG rates, crack trajectories, fatigue lives, and failure modes satisfactorily agree with the corresponding experimental data.
引用
收藏
页数:25
相关论文
共 50 条
[31]   Stress ratio dependence of fibre bridging significance in mode I fatigue delamination growth of composite laminates [J].
Yao, Liaojun ;
Sun, Yi ;
Zhao, Meiying ;
Alderliesten, R. C. ;
Benedictus, R. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 95 :65-74
[32]   Modelling the fretting fatigue crack growth: From short crack correction strategies to microstructural approaches [J].
de Pannemaecker, A. ;
Fouvry, S. ;
Buffiere, J. Y. ;
Brochu, M. .
INTERNATIONAL JOURNAL OF FATIGUE, 2018, 117 :75-89
[33]   Irreversible cyclic cohesive zone model for prediction of mode I fatigue crack growth in CFRP-strengthened steel plates [J].
Mohajer, M. ;
Bocciarelli, M. ;
Colombi, P. ;
Hosseini, A. ;
Nussbaumer, A. ;
Ghafoori, E. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 110
[34]   Fatigue Crack Growth Analysis of Functionally Graded Materials by EFGM and XFEM [J].
Pant, Mohit ;
Bhattacharya, Somnath .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (01)
[35]   Modelling fatigue crack growth in shape memory alloys [J].
Simoes, Marlini ;
Braithwaite, Christopher ;
Makaya, Advenit ;
Martinez-Paneda, Emilio .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (04) :1243-1257
[36]   Numerical analysis and experimental verification on crack growth and fatigue life in double-edge cracked metal plates [J].
Jen, Ming-Hwa R. ;
Wu, Yu-Jen ;
Wu, Ying-Hui ;
Huang, Wen-Pin .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)
[37]   Evaluation of scale invariance in fatigue crack growth in metallic materials [J].
Norman, V. ;
Ahlqvist, M. ;
Mattsson, T. .
INTERNATIONAL JOURNAL OF FATIGUE, 2024, 189
[38]   Delamination growth in composite plates under compressive fatigue loads [J].
Bennati, S ;
Valvo, PS .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (02) :248-254
[39]   A CA-XFEM for mixed-mode variable-amplitude fatigue crack growth [J].
Karimi, Mohammad ;
Rouzegar, Jafar .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 114
[40]   The effect of fibre bridging on the Paris relation for mode I fatigue delamination growth in composites [J].
Yao, Liaojun ;
Alderliesten, R. C. ;
Benedictus, R. .
COMPOSITE STRUCTURES, 2016, 140 :125-135