Document-level relation extraction with two-stage dynamic graph attention networks

被引:10
|
作者
Sun, Qi [1 ]
Zhang, Kun [1 ]
Huang, Kun [1 ]
Xu, Tiancheng [2 ]
Li, Xun [1 ]
Liu, Yaodi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Chinese Med, Key Lab Acupuncture & Med Res, Minist Educ, Nanjing 210023, Peoples R China
关键词
Document-level relation extraction; Graph attention networks; Dynamic graph; Two-stage framework; Pretrained language models;
D O I
10.1016/j.knosys.2023.110428
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level Relation Extraction (RE) aims to infer complex semantic relations between entities in a document. Previous approaches leverage a multi-classification model to predict relation types between each entity pair. However, in contrast to sentence-level RE, document-level RE contains various entities expressed by mentions appearing across multiple sentences in a document. Therefore, the amount of negative instances ('no relationship') significantly outnumbers that of other positive instances in document-level RE. In addition, most existing methods construct static graphs with heuristic rules to capture the interactions among entities. However, these heuristic rules ignore the specificities of the documents. In this study, we propose a novel two-stage framework to extract document-level relations based on dynamic graph attention networks, namely TDGAT. In the first stage, we capture the relational links of the entity pairs using a binary classification model. In the second stage, we extract fine-grained relations among entities, including the type of 'NA (no relationship)'. To reduce error propagation, we regard the entity pair links predicted in the first stage as the prior information and leverage them to reconstruct the document-level graphs of the second stage. In this manner, we can provide extra head and tail entity connection information for predicting relations in a document. Furthermore, we propose a dynamic graph strategy to explore the multi-hop interactions between related information. The experimental results show that our framework outperforms most existing models on the public document-level dataset DocRED. The extensive analysis demonstrates the effectiveness of our TDGAT in extracting inter-sentence relations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Graph neural networks with selective attention and path reasoning for document-level relation extraction
    Hang, Tingting
    Feng, Jun
    Wang, Yunfeng
    Yan, Le
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5353 - 5372
  • [2] Dual-stream dynamic graph structure network for document-level relation extraction
    Zhong, Yu
    Shen, Bo
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
  • [3] Document-level relation extraction via graph transformer networks and temporal convolutional networks
    Shi, Yong
    Xiao, Yang
    Quan, Pei
    Lei, MingLong
    Niu, Lingfeng
    PATTERN RECOGNITION LETTERS, 2021, 149 : 150 - 156
  • [4] Document-level relation extraction with multi-layer heterogeneous graph attention network
    Wang, Nianbin
    Chen, Tiantian
    Ren, Chaoqi
    Wang, Hongbin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [5] Enhancing Document-Level Relation Extraction with Attention-Convolutional Hybrid Networks and Evidence Extraction
    Zhang, Feiyu
    Hu, Ruiming
    Duan, Guiduo
    Huang, Tianxi
    COGNITIVE COMPUTATION, 2024, : 1113 - 1124
  • [6] Document-Level Relation Extraction with Deep Gated Graph Reasoning
    Liang, Zeyu
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2024, 32 (07) : 1037 - 1050
  • [7] A Document-Level Relation Extraction Framework with Dynamic Pruning
    Zhang, Hanyue
    Li, Li
    Shen, Jun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 13 - 25
  • [8] Dual-Channel and Hierarchical Graph Convolutional Networks for document-level relation extraction
    Sun, Qi
    Xu, Tiancheng
    Zhang, Kun
    Huang, Kun
    Lv, Laishui
    Li, Xun
    Zhang, Ting
    Dore-Natteh, Doris
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [9] Dual-Channel and Hierarchical Graph Convolutional Networks for document-level relation extraction
    Sun, Qi
    Xu, Tiancheng
    Zhang, Kun
    Huang, Kun
    Lv, Laishui
    Li, Xun
    Zhang, Ting
    Dore-Natteh, Doris
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [10] Evidence and Axial Attention Guided Document-level Relation Extraction
    Yuan, Jiawei
    Leng, Hongyong
    Qian, Yurong
    Chen, Jiaying
    Ma, Mengnan
    Hou, Shuxiang
    COMPUTER SPEECH AND LANGUAGE, 2025, 90