How Green are Redox Flow Batteries?

被引:21
|
作者
Ebner, Sophie [1 ]
Spirk, Stefan [2 ]
Stern, Tobias [1 ]
Mair-Bauernfeind, Claudia [1 ,3 ]
机构
[1] Karl Franzens Univ Graz, Inst Environm Syst Sci, Merangasse 18, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Biobased Prod & Paper Technol, Inffeldgasse 23, A-8010 Graz, Austria
[3] Kompetenzzentrum Holz GmbH, Wood Plus Competence Ctr Wood Composites & Wood Ch, Altenberger Str 69, A-4040 Linz, Austria
关键词
energy storage; environmental impact; life cycle assessment; redox flow batteries; uncertainty; LIFE-CYCLE ASSESSMENT; ENVIRONMENTAL-IMPACT; JOINT ORGANIZATION; STORAGE-SYSTEMS; ION BATTERIES; PORTO ISEP; AVEIRO UA; VANADIUM; SUSTAINABILITY; ASSESSMENTS;
D O I
10.1002/cssc.202201818
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Providing sustainable energy storage is a challenge that must be overcome to replace fossil-based fuels. Redox flow batteries are a promising storage option that can compensate for fluctuations in energy generation from renewable energy production, as their main asset is their design flexibility in terms of storage capacity. Current commercial options for flow batteries are mostly limited to inorganic materials such as vanadium, zinc, and bromine. As environmental aspects are one of the main drivers for developing flow batteries, assessing their environmental performance is crucial. However, this topic is still underexplored, as researchers have mostly focused on single systems with defined use cases and system boundaries, making the assessments of the overall technology inaccurate. This review was conducted to summarize the main findings of life cycle assessment studies on flow batteries with respect to environmental hotspots and their performance as compared to that of other battery systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Vanadium redox flow batteries: a technology review
    Cunha, Alvaro
    Martins, Jorge
    Rodrigues, Nuno
    Brito, F. P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (07) : 889 - 918
  • [22] Advanced aqueous redox flow batteries design: Ready for long-duration energy storage applications?
    Li, Zhejun
    Lu, Yi-Chun
    MRS ENERGY & SUSTAINABILITY, 2022, 9 (02) : 171 - 182
  • [23] Membrane Development for Vanadium Redox Flow Batteries
    Schwenzer, Birgit
    Zhang, Jianlu
    Kim, Soowhan
    Li, Liyu
    Liu, Jun
    Yang, Zhenguo
    CHEMSUSCHEM, 2011, 4 (10) : 1388 - 1406
  • [24] Smart Flow Electrosynthesis and Application of Organodisulfides in Redox Flow Batteries
    Chen, Qiliang
    Guo, Wei
    Fu, Yongzhu
    ADVANCED SCIENCE, 2022, 9 (01)
  • [25] Quinones for redox flow batteries
    Symons, Peter
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29 (29)
  • [26] Redox flow batteries: a review
    Adam Z. Weber
    Matthew M. Mench
    Jeremy P. Meyers
    Philip N. Ross
    Jeffrey T. Gostick
    Qinghua Liu
    Journal of Applied Electrochemistry, 2011, 41 : 1137 - 1164
  • [27] Levelized cost of electricity and greenhouse gas emissions of Ce- and V-based redox flow batteries
    Buchanan, Cailin
    Singh, Nirala
    JOURNAL OF POWER SOURCES, 2023, 582
  • [28] Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries
    Wang, Yarong
    He, Ping
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 770 - 779
  • [29] Aqueous Redox Flow Batteries: Small Organic Molecules for the Positive Electrolyte Species
    Cannon, Christopher G.
    Klusener, Peter A. A.
    Brandon, Nigel P.
    Kucernak, Anthony R. J.
    CHEMSUSCHEM, 2023, 16 (18)
  • [30] Redox flow batteries: a new frontier on energy storage
    Arevalo-Cid, P.
    Dias, P.
    Mendes, A.
    Azevedo, J.
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (21): : 5366 - 5419