From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input

被引:11
作者
Chang, Chenliang [1 ,2 ,3 ]
Dai, Bo [1 ,2 ]
Zhu, Dongchen
LI, Jiamao [3 ]
Xia, Jun [4 ]
Zhang, Dawei [1 ,2 ]
Hou, Lianping [5 ]
Zhuang, Songlin [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Engn Res Ctr Opt Instrument & Syst, Sch Opt Elect & Comp Engn, Minist Educ, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Bion Vis Syst Lab, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
[4] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Peoples R China
[5] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
DISPLAY;
D O I
10.1364/OL.478976
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Letter, we demonstrate a deep-learning-based method capable of synthesizing a photorealistic 3D hologram in real-time directly from the input of a single 2D image. We design a fully automatic pipeline to create large-scale datasets by converting any collection of real-life images into pairs of 2D images and corresponding 3D holograms and train our convolutional neural network (CNN) end-to-end in a supervised way. Our method is extremely computation -efficient and memory-efficient for 3D hologram generation merely from the knowledge of on-hand 2D image content. We experimentally demonstrate speckle-free and photoreal-istic holographic 3D displays from a variety of scene images, opening up a way of creating real-time 3D holography from everyday pictures. (c) 2023 Optical Society of America (c) 2023 Optica Publishing Group
引用
收藏
页码:851 / 854
页数:4
相关论文
empty
未找到相关数据