From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input

被引:13
作者
Chang, Chenliang [1 ,2 ,3 ]
Dai, Bo [1 ,2 ]
Zhu, Dongchen
LI, Jiamao [3 ]
Xia, Jun [4 ]
Zhang, Dawei [1 ,2 ]
Hou, Lianping [5 ]
Zhuang, Songlin [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Engn Res Ctr Opt Instrument & Syst, Sch Opt Elect & Comp Engn, Minist Educ, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Bion Vis Syst Lab, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
[4] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Peoples R China
[5] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
DISPLAY;
D O I
10.1364/OL.478976
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Letter, we demonstrate a deep-learning-based method capable of synthesizing a photorealistic 3D hologram in real-time directly from the input of a single 2D image. We design a fully automatic pipeline to create large-scale datasets by converting any collection of real-life images into pairs of 2D images and corresponding 3D holograms and train our convolutional neural network (CNN) end-to-end in a supervised way. Our method is extremely computation -efficient and memory-efficient for 3D hologram generation merely from the knowledge of on-hand 2D image content. We experimentally demonstrate speckle-free and photoreal-istic holographic 3D displays from a variety of scene images, opening up a way of creating real-time 3D holography from everyday pictures. (c) 2023 Optical Society of America (c) 2023 Optica Publishing Group
引用
收藏
页码:851 / 854
页数:4
相关论文
共 23 条
[1]  
bigbuckbunny, ABOUT US
[2]   Deep-learning-based computer-generated hologram from a stereo image pair [J].
Chang, Chenliang ;
Wang, Di ;
Zhu, Dongchen ;
Li, Jiamao ;
Xia, Jun ;
Zhang, Xiaolin .
OPTICS LETTERS, 2022, 47 (06) :1482-1485
[3]   Neural 3D Holography: Learning Accurate Wave Propagation Models for 3D Holographic Virtual and Augmented Reality Displays [J].
Choi, Suyeon ;
Gopakumar, Manu ;
Peng, Yifan ;
Kim, Jonghyun ;
Wetzstein, Gordon .
ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06)
[4]   DeepCGH: 3D computer-generated holography using deep learning [J].
Eybposh, M. Hossein ;
Caira, Nicholas W. ;
Atisa, Mathew ;
Chakravarthula, Praneeth ;
Pegard, Nicolas C. .
OPTICS EXPRESS, 2020, 28 (18) :26636-26650
[5]  
Firman M, 2020, P EUR C COMP VIS, V722
[6]   Holographic 3D Display Using Depth Maps Generated by 2D-to-3D Rendering Approach [J].
He, Zehao ;
Sui, Xiaomeng ;
Cao, Liangcai .
APPLIED SCIENCES-BASEL, 2021, 11 (21)
[7]   Three-dimensional deeply generated holography [Invited] [J].
Horisaki, Ryoichi ;
Nishizaki, Yohei ;
Kitaguchi, Katsuhisa ;
Saito, Mamoru ;
Tanida, Jun .
APPLIED OPTICS, 2021, 60 (04) :A323-A328
[8]  
Lasinger K., 2019, arXiv, DOI 10.48550/arXiv.1907.01341
[9]   Deep neural network for multi-depth hologram generation and its training strategy [J].
Lee, Juhyun ;
Jeong, Jinsoo ;
Cho, Jaebum ;
Yoo, Dongheon ;
Lee, Byounghyo ;
Lee, Byoungho .
OPTICS EXPRESS, 2020, 28 (18) :27137-27154
[10]   Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size [J].
Li, Yi-Long ;
Li, Nan-Nan ;
Wang, Di ;
Chu, Fan ;
Lee, Sin-Doo ;
Zheng, Yi-Wei ;
Wang, Qiong-Hua .
LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)