Potential Antihuman Epidermal Growth Factor Receptor 2 Target Therapy Beneficiaries: The Role of MRI-Based Radiomics in Distinguishing Human Epidermal Growth Factor Receptor 2-Low Status of Breast Cancer

被引:24
作者
Bian, Xiaoqian [2 ]
Du, Siyao [2 ]
Yue, Zhibin [3 ]
Gao, Si [2 ]
Zhao, Ruimeng [2 ]
Huang, Guoliang [2 ]
Guo, Liangcun [2 ]
Peng, Can [2 ]
Zhang, Lina [1 ,2 ]
机构
[1] China Med Univ, Dept Radiol, Affiliated Hosp 1, Nanjing North St 155, Shenyang 110001, Liaoning, Peoples R China
[2] China Med Univ, Dept Radiol, Affiliated Hosp 1, Shenyang, Peoples R China
[3] China Med Univ, Sch Intelligent Med, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
breast cancer; radiomics; T1-weighted contrast enhanced; apparent diffusion coefficient; HER2-low; NOMOGRAM;
D O I
10.1002/jmri.28628
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Multiparametric MRI radiomics could distinguish human epidermal growth factor receptor 2 (HER2)-positive from HER2-negative breast cancers. However, its value for further distinguishing HER2-low from HER2-negative breast cancers has not been investigated.Purpose: To investigate whether multiparametric MRI-based radiomics can distinguish HER2-positive from HER2-negative breast cancers (task 1) and HER2-low from HER2-negative breast cancers (task 2).Study Type: Retrospective.Population: Task 1: 310 operable breast cancer patients from center 1 (97 HER2-positive and 213 HER2-negative); task 2: 213 HER2-negative patients (108 HER2-low and 105 HER2-zero); 59 patients from center 2 (16 HER2-positive, 27 HER2-low and 16 HER2-zero) for external validation.Field Strength/Sequence: A 3.0 T/T1-weighted contrast-enhanced imaging (T1CE), diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC).Assessment: Patients in center 1 were assigned to a training and internal validation cohort at a 2:1 ratio. Intratumoral and peritumoral features were extracted from T1CE and ADC. After dimensionality reduction, the radiomics signatures (RS) of two tasks were developed using features from T1CE (RS-T1CE), ADC (RS-ADC) alone and T1CE + ADC combination (RS-Com).Statistical Tests: Mann-Whitney U tests, the least absolute shrinkage and selection operator, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).Results: For task 1, RS-ADC yielded higher area under the ROC curve (AUC) in the training, internal, and external validation of 0.767/0.725/0.746 than RS-T1CE (AUC = 0.733/0.674/0.641). For task 2, RS-T1CE yielded higher AUC of 0.765/0.755/0.678 than RS-ADC (AUC = 0.706/0.608/0.630). For both of task 1 and task 2, RS-Com achieved the best performance with AUC of 0.793/0.778/0.760 and 0.820/0.776/0.711, respectively, and obtained higher clinical benefit in DCA compared with RS-T1CE and RS-ADC. The calibration curves of all RS demonstrated a good fitness.Data Conclusion: Multiparametric MRI radiomics could noninvasively and robustly distinguish HER2-positive from HER2-negative breast cancers and further distinguish HER2-low from HER2-negative breast cancers.Evidence Level: 3.Technical Efficacy: Stage 2.
引用
收藏
页码:1603 / 1614
页数:12
相关论文
共 40 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Long-term prognostic significance of HER2-low and HER2-zero in node-negative breast cancer
    Almstedt, Katrin
    Heimes, Anne-Sophie
    Kappenberg, Franziska
    Battista, Marco J.
    Lehr, Hans-Anton
    Krajnak, Slavomir
    Lebrecht, Antje
    Gehrmann, Mathias
    Stewen, Kathrin
    Brenner, Walburgis
    Weikel, Wolfgang
    Rahnenfuehrer, Joerg
    Hengstler, Jan G.
    Hasenburg, Annette
    Schmidt, Marcus
    [J]. EUROPEAN JOURNAL OF CANCER, 2022, 173 : 10 - 19
  • [3] Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up
    Bustreo, Sara
    Osella-Abate, Simona
    Cassoni, Paola
    Donadio, Michela
    Airoldi, Mario
    Pedani, Fulvia
    Papotti, Mauro
    Sapino, Anna
    Castellano, Isabella
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2016, 157 (02) : 363 - 371
  • [4] Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population
    Chen, Ruixian
    Qi, Yana
    Huang, Ya
    Liu, Weijing
    Yang, Ruoning
    Zhao, Xin
    Wu, Yunhao
    Li, Qintong
    Wang, Zhu
    Sun, Xin
    Wei, Bing
    Chen, Jie
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2023, 197 (01) : 189 - 200
  • [5] Christiansen Ailsa, 2011, Genes Cancer, V2, P1146, DOI 10.1177/1947601911423028
  • [6] Why the stroma matters in breast cancer Insights into breast cancer patient outcomes through the examination of stromal biomarkers
    Conklin, Matthew W.
    Keely, Patricia J.
    [J]. CELL ADHESION & MIGRATION, 2012, 6 (03) : 249 - 260
  • [7] Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials
    Denkert, Carsten
    Seither, Fenja
    Schneeweiss, Andreas
    Link, Theresa
    Blohmer, Jens-Uwe
    Just, Marianne
    Wimberger, Pauline
    Forberger, Almuth
    Tesch, Hans
    Jackisch, Christian
    Schmatloch, Sabine
    Reinisch, Mattea
    Solomayer, Erich F.
    Schmitt, Wolfgang D.
    Hanusch, Claus
    Fasching, Peter A.
    Luebbe, Kristina
    Solbach, Christine
    Huober, Jens
    Rhiem, Kerstin
    Marme, Frederik
    Reimer, Toralf
    Schmidt, Marcus
    Sinn, Bruno, V
    Janni, Wolfgang
    Stickeler, Elmar
    Michel, Laura
    Stoetzer, Oliver
    Hahnen, Eric
    Furlanetto, Jenny
    Seiler, Sabine
    Nekljudova, Valentina
    Untch, Michael
    Loibl, Sibylle
    [J]. LANCET ONCOLOGY, 2021, 22 (08) : 1151 - 1161
  • [8] Optimizing the Peritumoral Region Size in Radiomics Analysis for Sentinel Lymph Node Status Prediction in Breast Cancer
    Ding, Jie
    Chen, Shenglan
    Sosa, Mario Serrano
    Cattell, Renee
    Lei, Lan
    Sun, Junqi
    Prasanna, Prateek
    Liu, Chunling
    Huang, Chuan
    [J]. ACADEMIC RADIOLOGY, 2022, 29 : S223 - S228
  • [9] Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions
    Goto, Mariko
    Sakai, Koji
    Yokota, Hajime
    Kiba, Maki
    Yoshida, Mariko
    Imai, Hiroshi
    Weiland, Elisabeth
    Yokota, Isao
    Yamada, Kei
    [J]. EUROPEAN RADIOLOGY, 2019, 29 (03) : 1164 - 1174
  • [10] Guo L., 2022, CANCERS, V14