CALCULATING JULIA FRACTAL SETS IN ANY EMBEDDING DIMENSION

被引:3
作者
Fariello, Ricardo [1 ]
Bourke, Paul [2 ]
Lopes, Joao P. [1 ]
机构
[1] Univ Estadual Montes Claros, Montes Claros, MG, Brazil
[2] Univ Western Australia, Perth, Australia
关键词
Fractals; Hypercomplex Julia Sets; Visualization; Voxel; MANDELBROT;
D O I
10.1142/S0218348X23500184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute and display hyperdimensional Julia sets using a multiplication operator that can be applied to any embedding dimension. Special attention is given to five-dimensional (5D) Julia sets, which are visualized in 3D through a voxel-based representation and volumetric ray casting rendering.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Bogush A.A., 2003, UKR J PHYS, V48, P295
  • [2] Generalization of 3D Mandelbrot and Julia sets
    Cheng Jin
    Tan Jian-rong
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (01): : 134 - 141
  • [3] Generation and graphical analysis of Mandelbrot and Julia sets in more than four dimensions
    Dixon, SL
    Steele, KL
    Burton, RP
    [J]. COMPUTERS & GRAPHICS, 1996, 20 (03) : 451 - 456
  • [4] Griffin C. J., 1992, Chaos, Solitons and Fractals, V2, P11, DOI 10.1016/0960-0779(92)90044-N
  • [5] Some visually interesting non-standard quaternion fractal sets
    Halayka, S.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2842 - 2846
  • [6] Hart J. C., 1989, Computer Graphics, V23, P289, DOI 10.1145/74334.74363
  • [7] Holbrook J. A. R., 1983, APPL MATH E-NOTES, V8, P1
  • [8] HOLBROOK JohnA.R., 1987, Annales des sciences mathematiques du Quebec, V11, P79
  • [9] Sedenions: algebra and analysis
    Imaeda, K
    Imaeda, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 77 - 88
  • [10] Julia G., 1918, J MATH PURES APPL, V8, P47