Transport of Cosmic-Ray Electrons from 1 au to the Sun

被引:5
作者
Petrosian, Vahe [1 ,2 ,3 ]
Orlando, Elena [2 ,4 ,5 ]
Strong, Andrew [6 ]
机构
[1] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA
[2] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Univ Trieste, Dept Phys, Trieste, Italy
[5] Natl Inst Nucl Phys INFN, Trieste, Italy
[6] Max Planck Inst Extraterr Phys, Garching, Germany
关键词
STOCHASTIC ACCELERATION; ALFVEN WAVES; GAMMA-RAYS; SOLAR; DYNAMICS; SCATTERING; RADIATION; PARTICLES; EMISSION; CORONA;
D O I
10.3847/1538-4357/aca474
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gamma rays are produced by cosmic-ray (CR) protons interacting with the particles at the solar photosphere and by CR electrons and positrons (CRes) via inverse Compton scattering of solar photons. The former comes from the solar disk while the latter extends beyond the disk. Evaluation of these emissions requires the flux and spectrum of CRs in the vicinity of the Sun, while most observations provide flux and spectra near the Earth, at around 1 au from the Sun. Past estimates of the quiet Sun gamma-ray emission use phenomenological modulation procedures to estimate spectra near the Sun. We show that CRe transport in the inner heliosphere requires a kinetic approach and use a novel approximation to determine the variation of CRe flux and spectrum from 1 au to the Sun including the effects of (1) the structure of the large-scale magnetic field, (2) small scale turbulence in the solar wind from several in situ measurements, in particular, those by Parker Solar Probe that extend this information to 0.1 au, and (3) most importantly, energy losses due to synchrotron and inverse Compton processes. We present results on the flux and spectrum variation of CRes from 1 au to the Sun for several transport models. In forthcoming papers we will use these results for a more accurate estimate of quiet Sun inverse Compton gamma-ray spectra, and, for the first time, the spectra of extreme ultraviolet to hard X-ray photons produced by synchrotron emission. These can be compared with the quiet Sun gamma-ray observation by the Fermi and X-ray upper limits set by RHESSI.
引用
收藏
页数:14
相关论文
共 34 条
  • [1] FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN
    Abdo, A. A.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    [J]. ASTROPHYSICAL JOURNAL, 2011, 734 (02)
  • [2] Aguilar M., 2014, PHYS REV LETT, V113, P121102
  • [3] Radio Measurements of the Magnetic Field in the Solar Chromosphere and the Corona
    Alissandrakis, Costas E.
    Gary, Dale E.
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 7
  • [4] Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU
    Badman, Samuel T.
    Bale, Stuart D.
    Rouillard, Alexis P.
    Bowen, Trevor A.
    Bonnell, John W.
    Goetz, Keith
    Harvey, Peter R.
    MacDowall, Robert J.
    Malaspina, David M.
    Pulupa, Marc
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [5] The Solar Wind as a Turbulence Laboratory
    Bruno, Roberto
    Carbone, Vincenzo
    [J]. LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) : 7 - +
  • [6] The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere
    Chen, C. H. K.
    Bale, S. D.
    Bonnell, J. W.
    Borovikov, D.
    Bowen, T. A.
    Burgess, D.
    Case, A. W.
    Chandran, B. D. G.
    de Wit, T. Dudok
    Goetz, K.
    Harvey, P. R.
    Kasper, J. C.
    Klein, K. G.
    Korreck, K. E.
    Larson, D.
    Livi, R.
    MacDowall, R. J.
    Malaspina, D. M.
    Mallet, A.
    McManus, M. D.
    Moncuquet, M.
    Pulupa, M.
    Stevens, M. L.
    Whittlesey, P.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
  • [7] Cosmic-Ray Diffusion Coefficients throughout the Inner Heliosphere from a Global Solar Wind Simulation
    Chhiber, R.
    Subedi, P.
    Usmanov, A. V.
    Matthaeus, W. H.
    Ruffolo, D.
    Goldstein, M. L.
    Parashar, T. N.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2017, 230 (02)
  • [8] THE DYNAMICS OF CHARGED-PARTICLES IN TURBULENT ASTROPHYSICAL PLASMAS
    DUNG, R
    PETROSIAN, V
    [J]. ASTROPHYSICAL JOURNAL, 1994, 421 (02) : 550 - 560
  • [9] The Relation between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
    Effenberger, Frederic
    Petrosian, Vahe
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2018, 868 (02)
  • [10] The spatial distribution of galactic and anomalous cosmic rays in the heliosphere at solar minimum
    Fujii, Z
    McDonald, FB
    [J]. HELIOSPHERIC COSMIC RAY TRANSPORT, MODULATION AND TURBULENCE, 2005, 35 (04): : 611 - 616