Cascaded Segmentation U-Net for Quality Evaluation of Scraping Workpiece

被引:0
作者
Yin, Hsin-Chung [1 ]
Lien, Jenn-Jier James [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
关键词
image measurement system; scraping workpiece; fully convolutional network; semantic segmentation; U-Net; Cascaded U-Net; image processing;
D O I
10.3390/s23020998
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the terms of industry, the hand-scraping method is a key technology for achieving high precision in machine tools, and the quality of scraping workpieces directly affects the accuracy and service life of the machine tool. However, most of the quality evaluation of the scraping workpieces is carried out by the scraping worker's subjective judgment, which results in differences in the quality of the scraping workpieces and is time-consuming. Hence, in this research, an edge-cloud computing system was developed to obtain the relevant parameters, which are the percentage of point (POP) and the peak point per square inch (PPI), for evaluating the quality of scraping workpieces. On the cloud computing server-side, a novel network called cascaded segmentation U-Net is proposed to high-quality segment the height of points (HOP) (around 40 mu m height) in favor of small datasets training and then carries out a post-processing algorithm that automatically calculates POP and PPI. This research emphasizes the architecture of the network itself instead. The design of the components of our network is based on the basic idea of identity function, which not only solves the problem of the misjudgment of the oil ditch and the residual pigment but also allows the network to be end-to-end trained effectively. At the head of the network, a cascaded multi-stage pixel-wise classification is designed for obtaining more accurate HOP borders. Furthermore, the "Cross-dimension Compression" stage is used to fuse high-dimensional semantic feature maps across the depth of the feature maps into low-dimensional feature maps, producing decipherable content for final pixel-wise classification. Our system can achieve an error rate of 3.7% and 0.9 points for POP and PPI. The novel network achieves an Intersection over Union (IoU) of 90.2%.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Islam MA, 2017, Arxiv, DOI arXiv:1703.00551
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING
    BENTLEY, JL
    [J]. COMMUNICATIONS OF THE ACM, 1975, 18 (09) : 509 - 517
  • [4] Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
  • [5] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [6] Hybrid Task Cascade for Instance Segmentation
    Chen, Kai
    Pang, Jiangmiao
    Wang, Jiaqi
    Xiong, Yu
    Li, Xiaoxiao
    Sun, Shuyang
    Feng, Wansen
    Liu, Ziwei
    Shi, Jianping
    Ouyang, Wanli
    Loy, Chen Change
    Lin, Dahua
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4969 - 4978
  • [7] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [8] Identification of the scraping quality for the machine tool using the smartphone
    Chen, Ming-Fei
    Chen, Cheng-Wen
    Su, Chun-Jung
    Huang, Wei-Lun
    Hsiao, Wen-Tse
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 105 (7-8) : 3451 - 3461
  • [9] Ciresan D., 2012, P ADV NEUR INF PROC, V25, P2843, DOI DOI 10.5555/2999325.2999452
  • [10] Everingham M, 2012, PASCAL VISUAL OBJECT