Deep variational models for collaborative filtering-based recommender systems

被引:6
|
作者
Bobadilla, Jesus [1 ,2 ]
Ortega, Fernando [1 ,2 ]
Gutierrez, Abraham [1 ,2 ]
Gonzalez-Prieto, Angel [2 ,3 ,4 ]
机构
[1] Univ Politecn Madrid, Dept Sistemas Informat, ETSI Sistemas Informat, C Alan Turing S-N, Madrid 28031, Spain
[2] Univ Politecn Madrid, KNODIS Res Grp, C Alan Turing S-N, Madrid 28031, Spain
[3] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Plaza Ciencias 3, E-28040 Madrid, Spain
[4] Inst Ciencias Matemat CSIC UAM UCM UC3M, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Recommender systems; Collaborative filtering; Variational enrichment; Deep learning; MATRIX FACTORIZATION;
D O I
10.1007/s00521-022-08088-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning provides accurate collaborative filtering models to improve recommender system results. Deep matrix factorization and their related collaborative neural networks are the state of the art in the field; nevertheless, both models lack the necessary stochasticity to create the robust, continuous, and structured latent spaces that variational autoencoders exhibit. On the other hand, data augmentation through variational autoencoder does not provide accurate results in the collaborative filtering field due to the high sparsity of recommender systems. Our proposed models apply the variational concept to inject stochasticity in the latent space of the deep architecture, introducing the variational technique in the neural collaborative filtering field. This method does not depend on the particular model used to generate the latent representation. In this way, this approach can be applied as a plugin to any current and future specific models. The proposed models have been tested using four representative open datasets, three different quality measures, and state-of-the-art baselines. The results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect. Additionally, a framework is provided to enable the reproducibility of the conducted experiments.
引用
收藏
页码:7817 / 7831
页数:15
相关论文
共 50 条
  • [41] Evaluating collaborative filtering recommender systems
    Herlocker, JL
    Konstan, JA
    Terveen, K
    Riedl, JT
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) : 5 - 53
  • [42] Scalable Collaborative Filtering Approaches for Large Recommender Systems
    Takacs, Gabor
    Pilaszy, Istvan
    Nemeth, Bottyan
    Tikk, Domonkos
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 623 - 656
  • [43] Differential privacy in collaborative filtering recommender systems: a review
    Muellner, Peter
    Lex, Elisabeth
    Schedl, Markus
    Kowald, Dominik
    FRONTIERS IN BIG DATA, 2023, 6
  • [44] Empirical Analysis of Collaborative Filtering-based Recommenders in Temporally Evolving Systems
    Shi, Xiao-Yu
    Luo, Xin
    Shang, Ming-Sheng
    Cai, Xin-Yi
    PROCEEDINGS OF THE 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2017), 2017, : 406 - 412
  • [45] Recommender Systems Based on Collaborative Filtering Using Review Texts-A Survey
    Srifi, Mehdi
    Oussous, Ahmed
    Ait Lahcen, Ayoub
    Mouline, Salma
    INFORMATION, 2020, 11 (06)
  • [46] Collaborative filtering embeddings for memory-based recommender systems
    Valcarce, Daniel
    Landin, Alfonso
    Parapar, Javier
    Barreiro, Alvaro
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 347 - 356
  • [47] A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems
    Dong, Xin
    Yu, Lei
    Wu, Zhonghuo
    Sun, Yuxia
    Yuan, Lingfeng
    Zhang, Fangxi
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1309 - 1315
  • [48] Comparison of Fuzzy Co-clustering Methods in Collaborative Filtering-Based Recommender System
    Kondo, Tadafumi
    Kanzawa, Yuchi
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2017), 2017, 10571 : 103 - 116
  • [49] Comparative analysis of collaborative filtering techniques for the multi-criteria recommender systems
    Singh, Reetu
    Dwivedi, Pragya
    Kant, Vibhor
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 64551 - 64571
  • [50] Neural embedding collaborative filtering for recommender systems
    Tianlin Huang
    Defu Zhang
    Lvqing Bi
    Neural Computing and Applications, 2020, 32 : 17043 - 17057