Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing

被引:9
作者
Prevot, Marianne E. [1 ]
Ustunel, Senay [1 ,2 ]
Freychet, Guillaume [3 ]
Webb, Caitlyn R. [1 ,4 ]
Zhernenkov, Mikhail [3 ]
Pindak, Ron [3 ]
Clements, Robert J. [1 ,4 ,5 ]
Hegmann, Elda [1 ,2 ,4 ,5 ,6 ]
机构
[1] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
[2] Kent State Univ, Mat Sci Grad Program, Kent, OH 44242 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[4] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[5] Kent State Univ, Biomed Sci Program, Kent, OH 44242 USA
[6] Kent State Univ, Brain Hlth Res Inst, Kent, OH 44242 USA
关键词
3D cell culture; 3D printing; 3D systems; additive manufacturing; digital light processing; liquid crystal elastomers; CELL-CULTURE SYSTEMS; SCAFFOLDS; ALIGNMENT; POLYMER; MICROSPHERES; FIBROBLASTS; DRIVEN; ORDER;
D O I
10.1002/mabi.202200343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advanced manufacturing has received considerable attention as a tool for the fabrication of cell scaffolds however, finding ideal biocompatible and biodegradable materials that fit the correct parameters for 3D printing and guide cells to align remain a challenge. Herein, a photocrosslinkable smectic-A (Sm-A) liquid crystal elastomer (LCE) designed for 3D printing is presented, that promotes cell proliferation but most importantly induces cell anisotropy. The LCE-based bio-ink allows the 3D duplication of a highly complex brain structure generated from an animal model. Vascular tissue models are generated from fluorescently stained mouse tissue spatially imaged using confocal microscopy and subsequently processed to create a digital 3D model suitable for printing. The 3D structure is reproduced using a Digital Light Processing (DLP) stereolithography (SLA) desktop 3D printer. Synchrotron Small-Angle X-ray Diffraction (SAXD) data reveal a strong alignment of the LCE layering within the struts of the printed 3D scaffold. The resultant anisotropy of the LCE struts is then shown to direct cell growth. This study offers a simple approach to produce model tissues built within hours that promote cellular alignment.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Influence of 3D Printing Parameters on the Physical and Mechanical Characteristics of Materials [J].
Timoshenko, M. V. ;
Koshevaya, K. S. ;
Balabanov, S. V. ;
Sychov, M. M. .
GLASS PHYSICS AND CHEMISTRY, 2022, 48 (04) :333-339
[42]   Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [J].
Kuzmenko, Volodymyr ;
Karabulut, Erdem ;
Pernevik, Elin ;
Enoksson, Peter ;
Gatenholm, Paul .
CARBOHYDRATE POLYMERS, 2018, 189 :22-30
[43]   Improvement of Mathematical Teaching Through the Development of Virtual CAD Models and Physical Prototypes for Real Visualization Using 3D Printing [J].
Muminovic, Adis J. ;
Hadziabdic, Vahidin ;
Musanovic, Sedin ;
Pervan, Nedim ;
Delic, Muamer .
TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2023, 12 (01) :13-21
[44]   Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning [J].
Abadia, Albert Velasco ;
Herbert, Katie M. ;
White, Timothy J. ;
Schwartz, Daniel K. ;
Kaar, Joel L. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) :26480-26488
[45]   Mathematical and Pharmacokinetic Approaches for the Design of New 3D Printing Inks Using Ricobendazole [J].
Eugenia Barberis, Maria ;
Daniel Palma, Santiago ;
Emilio Gonzo, Elio ;
Maria Bermudez, Jose ;
Lorier, Marianela ;
Ibarra, Manuel ;
Pablo Real, Juan .
PHARMACEUTICAL RESEARCH, 2022, 39 (09) :2277-2290
[46]   Mathematical and Pharmacokinetic Approaches for the Design of New 3D Printing Inks Using Ricobendazole [J].
María Eugenia Barberis ;
Santiago Daniel Palma ;
Elio Emilio Gonzo ;
José María Bermúdez ;
Marianela Lorier ;
Manuel Ibarra ;
Juan Pablo Real .
Pharmaceutical Research, 2022, 39 :2277-2290
[47]   3D Printing for Orthopedic Applications: From High resolution Cone Beam CT Images to Life Size Physical Models [J].
Jackson, Amiee ;
Ray, Lawrence A. ;
Dangi, Shusil ;
Ben-Zikri, Yehuda K. ;
Linte, Cristian A. .
MEDICAL IMAGING 2017: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2017, 10138
[48]   Printability and physical properties of iron slag powder composites using material extrusion-based 3D printing [J].
Hyungjin Kim ;
Sangkyu Lee .
Journal of Iron and Steel Research International, 2021, 28 :111-121
[49]   Physical and textural properties of functional edible protein films from soybean using an innovative 3D printing technology [J].
Dey, Sriloy ;
Hettiarachchy, Navam ;
Bisly, Ali A. ;
Luthra, Kaushik ;
Atungulu, Griffiths G. ;
Ubeyitogullari, Ali ;
Mozzoni, Leandro Angel .
JOURNAL OF FOOD SCIENCE, 2022, 87 (11) :4808-4819
[50]   3D Printable and Reconfigurable Liquid Crystal Elastomers with Light-Induced Shape Memory via Dynamic Bond Exchange [J].
Davidson, Emily C. ;
Kotikian, Arda ;
Li, Shucong ;
Aizenberg, Joanna ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2020, 32 (01)