Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing

被引:9
作者
Prevot, Marianne E. [1 ]
Ustunel, Senay [1 ,2 ]
Freychet, Guillaume [3 ]
Webb, Caitlyn R. [1 ,4 ]
Zhernenkov, Mikhail [3 ]
Pindak, Ron [3 ]
Clements, Robert J. [1 ,4 ,5 ]
Hegmann, Elda [1 ,2 ,4 ,5 ,6 ]
机构
[1] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
[2] Kent State Univ, Mat Sci Grad Program, Kent, OH 44242 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[4] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[5] Kent State Univ, Biomed Sci Program, Kent, OH 44242 USA
[6] Kent State Univ, Brain Hlth Res Inst, Kent, OH 44242 USA
关键词
3D cell culture; 3D printing; 3D systems; additive manufacturing; digital light processing; liquid crystal elastomers; CELL-CULTURE SYSTEMS; SCAFFOLDS; ALIGNMENT; POLYMER; MICROSPHERES; FIBROBLASTS; DRIVEN; ORDER;
D O I
10.1002/mabi.202200343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advanced manufacturing has received considerable attention as a tool for the fabrication of cell scaffolds however, finding ideal biocompatible and biodegradable materials that fit the correct parameters for 3D printing and guide cells to align remain a challenge. Herein, a photocrosslinkable smectic-A (Sm-A) liquid crystal elastomer (LCE) designed for 3D printing is presented, that promotes cell proliferation but most importantly induces cell anisotropy. The LCE-based bio-ink allows the 3D duplication of a highly complex brain structure generated from an animal model. Vascular tissue models are generated from fluorescently stained mouse tissue spatially imaged using confocal microscopy and subsequently processed to create a digital 3D model suitable for printing. The 3D structure is reproduced using a Digital Light Processing (DLP) stereolithography (SLA) desktop 3D printer. Synchrotron Small-Angle X-ray Diffraction (SAXD) data reveal a strong alignment of the LCE layering within the struts of the printed 3D scaffold. The resultant anisotropy of the LCE struts is then shown to direct cell growth. This study offers a simple approach to produce model tissues built within hours that promote cellular alignment.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Printability and physical properties of iron slag powder composites using material extrusion-based 3D printing [J].
Kim, Hyungjin ;
Lee, Sangkyu .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2021, 28 (01) :111-121
[22]   Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks [J].
Rocha, Victoria G. ;
Garcia-Tunon, Esther ;
Botas, Cristina ;
Markoulidis, Foivos ;
Feilden, Ezra ;
D'Elia, Eleonora ;
Ni, Na ;
Shaffer, Milo ;
Saiz, Eduardo .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) :37136-37145
[23]   Plant protein edible inks: Upgrading from 3D to 4D food printing [J].
Aghababaei, Fatemeh ;
Mcclements, David Julian ;
Pignitter, Marc ;
Hadidi, Milad .
FOOD CHEMISTRY-X, 2025, 26
[24]   eLearning and eMaking: 3D Printing Blurring the Digital and the Physical [J].
Loy, Jennifer .
EDUCATION SCIENCES, 2014, 4 (01) :108-121
[25]   Physical and 3D Printing Properties of Arrowroot Starch Gels [J].
Xu, Meiling ;
Dong, Qiaoru ;
Huang, Guiying ;
Zhang, Ya ;
Lu, Xuanxuan ;
Zhang, Jiaduo ;
Zhang, Kun ;
Huang, Qingrong .
FOODS, 2022, 11 (14)
[26]   Strip formation mechanisms and characteristics models in 3D printing of viscous polymer inks [J].
Li, Mingyu ;
Nguyen, Thai ;
Wang, Jun .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 69 :331-339
[27]   3D Printing of Liquid Crystal Polymers for Space Applications [J].
Houriet, Caroline ;
Claassen, Evelien ;
Mascolo, Chiara ;
Johri, Haimo ;
Brieva, Abel ;
Szmolka, Szilvia ;
Vincent-Bonnieu, Sebastien ;
Suliga, Agnieszka ;
Heeb, Raphael ;
Gantenbein, Silvan ;
Lafont, Ugo ;
Rohr, Thomas ;
Masania, Kunal .
ADVANCED MATERIALS TECHNOLOGIES, 2025, 10 (04)
[28]   Some Aspects Conditioning the Achieving of Filaments for 3D Printing from Physical Modified Corn Starch [J].
Dimonie, Doina ;
Damian, Celina ;
Trusca, Roxana ;
Rapa, Maria .
MATERIALE PLASTICE, 2019, 56 (02) :351-359
[29]   Multi-parameter-encoded 4D printing of liquid crystal elastomers for programmable shape morphing behaviors [J].
Ren, Luquan ;
He, Yulin ;
Ren, Lei ;
Wang, Zhenguo ;
Zhou, Xueli ;
Wu, Qian ;
Wang, Kunyan ;
Li, Bingqian ;
Liu, Qingping .
ADDITIVE MANUFACTURING, 2023, 61
[30]   3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation [J].
Li, Dongxiao ;
Sun, Yuxuan ;
Li, Xingjian ;
Li, Xingxiang ;
Zhu, Zhengqing ;
Sun, Boxi ;
Nong, Shutong ;
Wu, Jiyang ;
Pan, Tingrui ;
Li, Weihua ;
Zhang, Shiwu ;
Li, Mujun .
ACS NANO, 2025, 19 (07) :7075-7087