Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing

被引:8
|
作者
Prevot, Marianne E. [1 ]
Ustunel, Senay [1 ,2 ]
Freychet, Guillaume [3 ]
Webb, Caitlyn R. [1 ,4 ]
Zhernenkov, Mikhail [3 ]
Pindak, Ron [3 ]
Clements, Robert J. [1 ,4 ,5 ]
Hegmann, Elda [1 ,2 ,4 ,5 ,6 ]
机构
[1] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
[2] Kent State Univ, Mat Sci Grad Program, Kent, OH 44242 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[4] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[5] Kent State Univ, Biomed Sci Program, Kent, OH 44242 USA
[6] Kent State Univ, Brain Hlth Res Inst, Kent, OH 44242 USA
关键词
3D cell culture; 3D printing; 3D systems; additive manufacturing; digital light processing; liquid crystal elastomers; CELL-CULTURE SYSTEMS; SCAFFOLDS; ALIGNMENT; POLYMER; MICROSPHERES; FIBROBLASTS; DRIVEN; ORDER;
D O I
10.1002/mabi.202200343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advanced manufacturing has received considerable attention as a tool for the fabrication of cell scaffolds however, finding ideal biocompatible and biodegradable materials that fit the correct parameters for 3D printing and guide cells to align remain a challenge. Herein, a photocrosslinkable smectic-A (Sm-A) liquid crystal elastomer (LCE) designed for 3D printing is presented, that promotes cell proliferation but most importantly induces cell anisotropy. The LCE-based bio-ink allows the 3D duplication of a highly complex brain structure generated from an animal model. Vascular tissue models are generated from fluorescently stained mouse tissue spatially imaged using confocal microscopy and subsequently processed to create a digital 3D model suitable for printing. The 3D structure is reproduced using a Digital Light Processing (DLP) stereolithography (SLA) desktop 3D printer. Synchrotron Small-Angle X-ray Diffraction (SAXD) data reveal a strong alignment of the LCE layering within the struts of the printed 3D scaffold. The resultant anisotropy of the LCE struts is then shown to direct cell growth. This study offers a simple approach to produce model tissues built within hours that promote cellular alignment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers
    Ustunel, Senay
    Pandya, Harsh
    Prevot, Marianne E.
    Pegorin, Gisele
    Shiralipour, Faeze
    Paul, Rajib
    Clements, Robert J.
    Khabaz, Fardin
    Hegmann, Elda
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (11)
  • [2] Programmable Curvature in Liquid Crystal Elastomers for Fabrication of 3D Electronics
    Gibson, Jared A.
    George, Sasha M.
    Ambulo, Cedric P.
    Sivaperuman Kalairaj, Manivannan
    Dana, Asaf
    Tseng, Yeh-Chia
    Auguste, Anesia D.
    Lemieux, Melbs
    Mcconney, Michael E.
    Ware, Taylor H.
    ACS APPLIED ELECTRONIC MATERIALS, 2025, : 2373 - 2383
  • [3] New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate
    Prevot, Marianne E.
    Bergquist, Leah E.
    Sharma, Anshul
    Mori, Taizo
    Gao, Yunxiang
    Bera, Tanmay
    Zhu, Chenhui
    Leslie, Michelle T.
    Cukelj, Richard
    Korley, LaShanda T. J.
    Freeman, Ernest J.
    McDonough, Jennifer A.
    Clements, Robert J.
    Hegmann, Elda
    LIQUID CRYSTALS XXI, 2017, 10361
  • [4] Preparation and Properties of Photosensitive Inks for Double Curing 3D Printing Elastomers
    Deng Y.
    Zhang A.
    Bao J.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2020, 36 (07): : 112 - 117
  • [5] 3D printing of biomimetic liquid crystal elastomers with enhanced energy absorption capacities
    Zhao, Yao
    Li, Jianyang
    Ren, Lei
    Liu, Qingping
    Ren, Luquan
    Wang, Kunyang
    Li, Bingqian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5683 - 5691
  • [6] Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators
    Barnes, Morgan
    Sajadi, Seyed M.
    Parekh, Shaan
    Rahman, Muhammad M.
    Ajayan, Pulickel M.
    Verduzco, Rafael
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (25) : 28692 - 28699
  • [7] Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks
    Zheng, Sijia
    Zlatin, Michael
    Selvaganapathy, Ponnambalam Ravi
    Brook, Michael A.
    ADDITIVE MANUFACTURING, 2018, 24 : 86 - 92
  • [8] Application of artificial intelligence in 3D printing physical organ models
    Ma, Liang
    Yu, Shijie
    Xu, Xiaodong
    Amadi, Sidney Moses
    Zhang, Jing
    Wang, Zhifei
    MATERIALS TODAY BIO, 2023, 23
  • [9] DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels
    Melilli, Giuseppe
    Carmagnola, Irene
    Tonda-Turo, Chiara
    Pirri, Fabrizio
    Ciardelli, Gianluca
    Sangermano, Marco
    Hakkarainen, Minna
    Chiappone, Annalisa
    POLYMERS, 2020, 12 (08)
  • [10] 3D Printing of Physical Organ Models: Recent Developments and Challenges
    Jin, Zhongboyu
    Li, Yuanrong
    Yu, Kang
    Liu, Linxiang
    Fu, Jianzhong
    Yao, Xinhua
    Zhang, Aiguo
    He, Yong
    ADVANCED SCIENCE, 2021, 8 (17)