Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line

被引:20
作者
Carmona, Victoriano [1 ,2 ]
Fernandez-Sanchez, Fernando [3 ,4 ]
Novaes, Douglas D. [5 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Matemat Aplicada 2, Calle Virgen Africa 7, Seville 41011, Spain
[2] Univ Seville, Escuela Politecn Super, IMUS, Calle Virgen Africa 7, Seville 41011, Spain
[3] Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Camino Descubrimientos S-N, Seville 41092, Spain
[4] Univ Seville, Escuela Tecn Super Ingn, IMUS, Camino Descubrimientos S-N, Seville 41092, Spain
[5] Univ Estadual Campinas UNICAMP, Inst Matemat Estat & Comp Cient IMECC, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Planar piecewise differential linear; systems; Limit cycles; Upper bounds; Poincar? half-maps; Khovanski???s theory;
D O I
10.1016/j.aml.2022.108501
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a uniform upper bound for the maximum number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line has been subject of interest of hundreds of papers. After more than 30 years of investigation since Lum-Chua's work, it has remained an open question whether this uniform upper bound exists or not. Here, we give a positive answer for this question by establishing the existence of a natural number L* <= 8 for which any planar piecewise linear differential system with two zones separated by a straight line has no more than L* limit cycles. The proof is obtained by combining a newly developed integral characterization of Poincare half-maps for linear differential systems with an extension of Khovanskii's theory for investigating the number of intersection points between smooth curves and a particular kind of orbits of vector fields. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Ahlfors Lars V., 1953, CONTRIBUTIONS THEORY, V30, P3
[2]  
Andronov A.A., 1987, THEORY OSCILLATORS
[3]   PIECEWISE LINEAR PERTURBATIONS OF A LINEAR CENTER [J].
Buzzi, Claudio ;
Pessoa, Claudio ;
Torregrosa, Joan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) :3915-3936
[4]   Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields [J].
Cardoso, Joao L. ;
Llibre, Jaume ;
Novaes, Douglas D. ;
Tonon, Durval J. .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (03) :490-514
[5]  
Carmona V, 2023, Arxiv, DOI [arXiv:2207.14634, 10.1016/j.cnsns.2023.107257, DOI 10.1016/J.CNSNS.2023.107257]
[6]  
Carmona V, 2022, Arxiv, DOI arXiv:2109.12673
[7]   Integral characterization for Poincare half-maps in planar linear systems [J].
Carmona, Victoriano ;
Fernandez-Sanchez, Fernando .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 :319-346
[8]   A new simple proof for Lum-Chua's conjecture [J].
Carmona, Victoriano ;
Fernandez-Sanchez, Fernando ;
Novaes, Douglas D. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 40
[9]  
Filippov A., 1988, Differential equations with discontinuous righthand sides: Control systems
[10]   Bifurcation sets of continuous piecewise linear systems with two zones [J].
Freire, E ;
Ponce, E ;
Rodrigo, F ;
Torres, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11) :2073-2097