Study on the Process Window in Wire Arc Additive Manufacturing of a High Relative Density Aluminum Alloy

被引:2
|
作者
Wu, Yajun [1 ]
Li, Zhanxin [1 ]
Wang, Yuzhong [1 ]
Guo, Wenhua [1 ,2 ]
Lu, Bingheng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
[2] Natl Innovat Inst Addit Mfg, Xian 710100, Peoples R China
关键词
wire arc additive manufacturing; relative density; data augmentation; eXtreme Gradient Boosting; aluminum alloy; process window; pore; MECHANICAL-PROPERTIES; COMPONENTS; POROSITY; MICROSTRUCTURE; OPTIMIZATION; PARAMETERS;
D O I
10.3390/met14030330
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, there has been a heightened focus on multiplex porosity due to its significant adverse impact on the mechanical properties of aluminum alloy components produced through wire arc additive manufacturing (WAAM). This study investigates the impacts of the process parameters and dimension parameters on the relative densities of WAAM 2219 aluminum alloy components by conducting experiments and investigates the changes in high relative density process windows with different dimension parameters. The findings reveal a hierarchy in the influence of various parameters on the relative density of the 2219 aluminum alloy: travel speed (TS), wire feed speed (WFS), the number of printed layers (L), interlayer cooling time (ICT), and theoretical length of weld (TLW). A series of data for analysis was produced through a designed experiment procedure, and on the basis of this, by integrating the data augmentation method with the eXtreme Gradient Boosting (XGBoost) algorithm, the relationship among the process parameters, dimension parameters, and relative density was modeled. Furthermore, through leveraging the established model, we analyzed the changes in the optimized process window corresponding to a high relative density with the L. The optimal windows of WFS and TS change when the L reaches a certain value. In contrast, the optimal window of ICT remains consistent despite an increase in the L. Finally, the relative density and mechanical properties of the formed 20-layer specimens within the model-derived window were verified. The relative density of the specimens within the window reached 98.77%, the ultimate tensile strength (UTS) reached 279.96 MPa, and the yield strength (YS) reached 132.77 MPa. This work offers valuable insights for exploring the process window and selecting process parameters through a more economical and faster approach in WAAM aluminum components.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Study on Forming Characteristics and Process Stability in Wire Arc Additive Manufacturing of 5356 Aluminum Alloy
    Yu, Qianxi
    Meng, Yunfei
    Xu, Jianeng
    Wu, Xu
    Guo, Xiaohan
    Xie, Yuhui
    Yang, Ziheng
    Chen, Hui
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [2] A Finite Element Study of Wire Arc Additive Manufacturing of Aluminum Alloy
    Han, Yousung
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [3] A Review of Aluminum Alloy Fabricated by Different Processes of Wire Arc Additive Manufacturing
    Wang, Zeli
    Zhang, Yuanbin
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2021, 27 (01): : 18 - 26
  • [4] Wire and Arc Additive Manufacturing of High-Strength Al-Zn-Mg Aluminum Alloy
    Fang, Xuewei
    Chen, Guopeng
    Yang, Jiannan
    Xie, Yang
    Huang, Ke
    Lu, Bingheng
    FRONTIERS IN MATERIALS, 2021, 8 (08):
  • [5] Normalized evaluation for wire arc additive manufacturing of 2319 aluminum alloy
    Lyu, Feiyue
    Wang, Leilei
    Dou, Zhiwei
    Liu, Shengxin
    Du, Mingzhen
    Gao, Chuanyun
    Zhan, Xiaohong
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (03): : 137 - 148
  • [6] Wire arc additive manufacturing (WAAM) of nanotreated aluminum alloy 6061
    Chi, Yitian
    Murali, Narayanan
    Liu, Jingke
    Liese, Maximilian
    Li, Xiaochun
    RAPID PROTOTYPING JOURNAL, 2023, 29 (07) : 1341 - 1349
  • [7] Investigation on the process window with liner energy density for single-layer parts fabricated by wire and arc additive manufacturing
    Sun, Laibo
    Jiang, Fengchun
    Huang, Ruisheng
    Yuan, Ding
    Su, Yan
    Guo, Chunhuan
    Wang, Jiandong
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 56 : 898 - 907
  • [8] Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing
    Langelandsvik, Geir
    Akselsen, Odd M.
    Furu, Trond
    Roven, Hans J.
    MATERIALS, 2021, 14 (18)
  • [9] Effect of arc oscillation on porosity and mechanical properties of 2319 aluminum alloy fabricated by CMT-wire arc additive manufacturing
    Wei, Yuhan
    Liu, Fencheng
    Liu, Fenggang
    Yu, Dong
    You, Qifan
    Huang, Chunping
    Wang, Zhitai
    Jiang, Wugui
    Lin, Xin
    Hu, Xiaoan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 3477 - 3490
  • [10] Review of post-processing methods for high-quality wire arc additive manufacturing
    Bankong, B. D.
    Abioye, T. E.
    Olugbade, T. O.
    Zuhailawati, H.
    Gbadeyan, O. O.
    Ogedengbe, T., I
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (02) : 129 - 146