Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning

被引:9
|
作者
He, Chunmei [1 ,2 ]
Li, Xiuguang [1 ,2 ]
Xia, Yue [1 ,2 ]
Tang, Jing [1 ,2 ]
Yang, Jie [1 ,2 ]
Ye, Zhengchun [3 ]
机构
[1] Xiangtan Univ, Sch Comp Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Cyberspace Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Mech Engn, Xiangtan 411105, Hunan, Peoples R China
关键词
Entropy; Feature extraction; Reliability; Adaptation models; Training; Cyberspace; Computer science; Transfer learning; partial domain adaptation; deep neural network; image classification; contrastive learning;
D O I
10.1109/TCSVT.2023.3296617
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Partial domain adaptation (PDA) assumes that target domain class label set is a subset of that of source domain, while this problem setting is close to the actual scenario. At present, there are mainly two methods to solve the overfitting of source domain in PDA, namely the entropy minimization and the weighted self-training. However, the entropy minimization method may make the distribution prediction sharp but inaccurate for samples with relatively average prediction distribution, and cause the model to learn more error information. While the weighted self-training method will introduce erroneous noise information in the self-training process due to the existence of noise weights. Therefore, we address these issues in our work and propose self-training contrastive partial domain adaptation method (STCPDA). We present two modules to mine domain information in STCPDA. We first design self-training module based on simple samples in target domain to address the overfitting to source domain. We divide the target domain samples into simple samples with high reliability and difficult samples with low reliability, and the pseudo-labels of simple samples are selected for self-training learning. Then we construct the contrastive learning module for source and target domains. We embed contrastive learning into feature space of the two domains. By this contrastive learning module, we can fully explore the hidden information in all domain samples and make the class boundary more salient. Many experimental results on five datasets show the effectiveness and excellent classification performance of our method.
引用
收藏
页码:1532 / 1545
页数:14
相关论文
共 50 条
  • [21] Contrastive Learning Assisted-Alignment for Partial Domain Adaptation
    Yang, Cuie
    Cheung, Yiu-Ming
    Ding, Jinliang
    Tan, Kay Chen
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7621 - 7634
  • [22] Unsupervised Domain Adaptation for Remote Sensing Image Segmentation Based on Adversarial Learning and Self-Training
    Liang, Chenbin
    Cheng, Bo
    Xiao, Baihua
    Dong, Yunyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [23] Self-Training Based Adversarial Domain Adaptation for Radio Signal Recognition
    Liang, Zhi
    Xie, Jian
    Yang, Xin
    Tao, Mingliang
    Wang, Ling
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (11) : 2646 - 2650
  • [24] Machine Reading Comprehension Framework Based on Self-Training for Domain Adaptation
    Lee, Hyeon-Gu
    Jang, Youngjin
    Kim, Harksoo
    IEEE Access, 2021, 9 : 21279 - 21285
  • [25] Energy-based Self-Training and Normalization for Unsupervised Domain Adaptation
    Herath, Samitha
    Fernando, Basura
    Abbasnejad, Ehsan
    Hayat, Munawar
    Khadivi, Shahram
    Harandi, Mehrtash
    Rezatofighi, Hamid
    Haffari, Gholamreza
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11619 - 11628
  • [26] Machine Reading Comprehension Framework Based on Self-Training for Domain Adaptation
    Lee, Hyeon-Gu
    Jang, Youngjin
    Kim, Harksoo
    IEEE ACCESS, 2021, 9 : 21279 - 21285
  • [27] Unsupervised Video Domain Adaptation with Masked Pre-Training and Collaborative Self-Training
    Reddy, Arun
    Paul, William
    Rivera, Corban
    Shah, Ketul
    de Melo, Celso M.
    Chellappa, Rama
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 18919 - 18929
  • [28] Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation
    Niemeijer, Joshua
    Schaefer, Joerg P.
    2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2021, : 364 - 371
  • [29] Reranking and Self-Training for Parser Adaptation
    McClosky, David
    Charniak, Eugene
    Johnson, Mark
    COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, 2006, : 337 - 344
  • [30] An Evaluation of Self-training Styles for Domain Adaptation on the Task of Splice Site Prediction
    Herndon, Nic
    Caragea, Doina
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 1042 - 1047