A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture Retrieval

被引:15
作者
Batchu, Vishal [1 ]
Nearing, Grey [2 ]
Gulshan, Varun [1 ]
机构
[1] Google Res, Bangalore, India
[2] Google Res, Mountain View, CA USA
关键词
Deep learning; Soil moisture; Remote sensing; Machine learning; Satellite observations; Hydrology; COARSE RESOLUTION SATELLITE; SURFACE-ROUGHNESS; SMOS; NETWORK; WATER; VALIDATION; PRODUCTS; IRRIGATION; MISSION; IMAGES;
D O I
10.1175/JHM-D-22-0118.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We develop a deep learning-based convolutional-regression model that estimates the volumetric soil mois-ture content in the top -5 cm of soil. Input predictors include Sentinel-1 (active radar) and Sentinel-2 (multispectral imag-ery), as well as geophysical variables from SoilGrids and modeled soil moisture fields from SMAP and GLDAS. The model was trained and evaluated on data from -1000 in situ sensors globally over the period 2015-21 and obtained an average per-sensor correlation of 0.707 and ubRMSE of 0.055 m3 m23, and it can be used to produce a soil moisture map at a nominal 320-m resolution. These results are benchmarked against 14 other soil moisture evaluation research works at different locations, and an ablation study was used to identify important predictors.
引用
收藏
页码:1789 / 1823
页数:35
相关论文
共 126 条
[1]   Downscaling SMAP Radiometer Soil Moisture Over the CONUS Using an Ensemble Learning Method [J].
Abbaszadeh, Peyman ;
Moradkhani, Hamid ;
Zhan, Xiwu .
WATER RESOURCES RESEARCH, 2019, 55 (01) :324-344
[2]   The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France [J].
Al-Yaari, A. ;
Dayau, S. ;
Chipeaux, C. ;
Aluome, C. ;
Kruszewski, A. ;
Loustau, D. ;
Wigneron, J. -P. .
REMOTE SENSING, 2018, 10 (11)
[3]   Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Kerr, Y. ;
Rodriguez-Fernandez, N. ;
O'Neill, P. E. ;
Jackson, T. J. ;
De Lannoy, G. J. M. ;
Al Bitar, A. ;
Mialon, A. ;
Richaume, P. ;
Walker, J. P. ;
Mahmoodi, A. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 193 :257-273
[4]   Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations [J].
Albergel, C. ;
de Rosnay, P. ;
Balsamo, G. ;
Isaksen, L. ;
Munoz-Sabater, J. .
JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (05) :1442-1460
[5]  
[Anonymous], 1998, Understanding synthetic aperture radar images
[6]   Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements [J].
Baghdadi, N ;
Gherboudj, I ;
Zribi, M ;
Sahebi, M ;
King, C ;
Bonn, F .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (18) :3593-3623
[7]   Sentinel-1 soil moisture at 1 km resolution: a validation study [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Lovergine, Francesco P. ;
Palmisano, Davide ;
Peng, Jian ;
Marzahn, Philip ;
Wegmuller, Urs ;
Cartus, Oliver ;
Dabrowska-Zielinska, Katarzyna ;
Musial, Jan P. ;
Davidson, Malcolm W. J. ;
Pauwels, Valentijn R. N. ;
Cosh, Michael H. ;
McNairn, Heather ;
Johnson, Joel T. ;
Walker, Jeffrey P. ;
Yueh, Simon H. ;
Entekhabi, Dara ;
Kerr, Yann H. ;
Jackson, Thomas J. .
REMOTE SENSING OF ENVIRONMENT, 2021, 263
[8]  
Beale J., 2019, Hydrol. Earth Syst. Sci. Discuss., V2019, P1, DOI [10.5194/hess-2019-294., DOI 10.5194/HESS-2019-294]
[9]   U.S. Climate Reference Network Soil Moisture and Temperature Observations [J].
Bell, Jesse E. ;
Palecki, Michael A. ;
Baker, C. Bruce ;
Collins, William G. ;
Lawrimore, Jay H. ;
Leeper, Ronald D. ;
Hall, Mark E. ;
Kochendorfer, John ;
Meyers, Tilden P. ;
Wilson, Tim ;
Diamond, Howard J. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) :977-988
[10]   Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau [J].
Bi, Haiyun ;
Ma, Jianwen ;
Zheng, Wenjun ;
Zeng, Jiangyuan .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (06) :2658-2678