A Bifunctional Optoelectronic Device for Photodetection and Photoluminescence Switching Based on Graphene/ZnTe/Graphene van der Waals Heterostructures

被引:7
|
作者
Wang, Yushu [1 ,2 ]
Chen, Zhesheng [3 ]
Qu, Yan [4 ,5 ]
Zhang, Mingrui [1 ,2 ]
Ren, Yifeng [1 ,2 ]
Sun, Haoying [1 ,2 ]
Li, Yuan [1 ,6 ]
Deng, Yu [1 ]
Li, Songlin [7 ,8 ]
Nie, Yuefeng [1 ,2 ]
Xiang, Hengyang [3 ]
Wu, Yaping [9 ]
Shi, Yi [7 ,8 ]
Zeng, Haibo [2 ,3 ]
Hao, Yufeng [1 ,2 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Display Mat & Devices, Nanjing 210094, Peoples R China
[4] Sixth Element Changzhou Mat Technol Co Ltd, Changzhou 213161, Peoples R China
[5] Jiangsu Jiangnan Xiyuan Graphene Technol Co LTD, Changzhou 213161, Peoples R China
[6] Shanxi Univ, Inst Optoelect, Collaborat Innovat Ctr Extreme Opt, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[7] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[8] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[9] Xiamen Univ, Dept Phys, Fujian Prov Key Lab Semicond Mat & Applicat, OSED, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructure; ZnTe; photodetection; photoluminescence; switch; two-dimensionalmaterial; chemical vapor deposition; LIGHT-EMITTING-DIODES; GRAPHENE; ELECTROLUMINESCENCE; NANOWIRES; GROWTH;
D O I
10.1021/acsnano.3c07814
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the dynamic processes, such as generation, separation, transport, and recombination, of photoexcited carriers in a semiconductor is foundational in the design of various devices for optoelectronic applications. One may imagine that if different processes can be manipulated in one single device and thus generate useful signals, a multifunctional device can be realized, and the toolbox for integrated optoelectronics will be expanded. Here, we revealed that in a graphene/ZnTe/graphene van der Waals (vdW) heterostructure, the carriers can be generated by illumination from visible to infrared frequencies, and thus, the detected spectrum range extends to the communication band, well beyond the band gap of ZnTe (2.26 eV). More importantly, we are able to control the competition between separation and recombination of the photoexcited carriers by an electric bias along the thickness-defined channel of the ZnTe flake: as the bias increases, the photodetecting performance, e.g. response speed and photocurrent, are improved due to the efficient separation of carriers; synchronously, the photoluminescence (PL) intensity decreases and even switches off due to the suppressed recombination process. The ZnTe-based vdW heterostructure device thus integrates both photodetection and PL switching functions by manipulating the generation, separation, transport, and recombination of carriers, which may inspire the design of the next generation of miniaturized optoelectronic devices based on the vdW heterostructures made by various thin flakes.
引用
收藏
页码:21829 / 21837
页数:9
相关论文
共 50 条
  • [21] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Matthew Yankowitz
    Qiong Ma
    Pablo Jarillo-Herrero
    Brian J. LeRoy
    Nature Reviews Physics, 2019, 1 : 112 - 125
  • [22] Tunable band gaps in graphene/GaN van der Waals heterostructures
    Huang, Le
    Yue, Qu
    Kang, Jun
    Li, Yan
    Li, Jingbo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (29)
  • [23] Quasiperiodic Van der Waals Heterostructures of Graphene and Hexagonal Boron Nitride
    Bhandary, Sumanta
    Haldar, Soumyajyoti
    Sanyal, Biplab
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (02):
  • [24] Graphene-based van der Waals heterostructures for emission and detection of terahertz radiation
    Otsuji, Taiichi
    Dubinov, Alexander
    Aleshkin, VladimirYa
    Svintsov, Dmitry
    Ryzhii, Maxim
    Tombet, Stephane Boubanga
    Yadav, Deepika
    Satou, Akira
    Mitin, Vladimir
    Shur, Michael S.
    Ryzhii, Victor
    TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS X: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2016, 9856
  • [25] Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures
    Lin, Yu-Chuan
    Li, Jun
    de la Barrera, Sergio C.
    Eichfeld, Sarah M.
    Nie, Yifan
    Addou, Rafik
    Mende, Patrick C.
    Wallace, Robert M.
    Cho, Kyeongjae
    Feenstra, Randall M.
    Robinson, Joshua A.
    NANOSCALE, 2016, 8 (16) : 8947 - 8954
  • [26] Vertical electron transport in van der Waals heterostructures with graphene layers
    Ryzhii, V.
    Otsuji, T.
    Ryzhii, M.
    Aleshkin, V. Ya.
    Dubinov, A. A.
    Mitin, V.
    Shur, M. S.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (15)
  • [27] Ferroelectric semiconductor junctions based on graphene/In2Se3/graphene van der Waals heterostructures
    Xie, Shihong
    Dey, Anubhab
    Yan, Wenjing
    Kudrynskyi, Zakhar R.
    Balakrishnan, Nilanthy
    Makarovsky, Oleg
    Kovalyuk, Zakhar D.
    Castanon, Eli G.
    Kolosov, Oleg
    Wang, Kaiyou
    Patane, Amalia
    2D MATERIALS, 2021, 8 (04)
  • [28] Persistent hysteresis in graphene-mica van der Waals heterostructures
    Mohrmann, Jens
    Watanabe, Kenji
    Taniguchi, Takashi
    Danneau, Romain
    NANOTECHNOLOGY, 2015, 26 (01)
  • [29] Mid-infrared Photodetection Using Cyclotron Resonance in Graphene/h-BN van der Waals Heterostructures
    Onodera, Momoko
    Kinoshita, Kei
    Moriya, Rai
    Masubuchi, Satoru
    Watanabe, Kenji
    Taniguchi, Takashi
    Machida, Tomoki
    SENSORS AND MATERIALS, 2019, 31 (07) : 2281 - 2290
  • [30] Graphene/In2S3 van der Waals Heterostructure for Ultrasensitive Photodetection
    Lu, Jianting
    Wei, Aixiang
    Zhao, Yu
    Tao, Lili
    Yang, Yibing
    Zheng, Zhaoqiang
    Wang, Han
    Luo, Dongxiang
    Liu, Jun
    Tao, Li
    Li, Hao
    Li, Jingbo
    Xu, Jian-Bin
    ACS PHOTONICS, 2018, 5 (12): : 4912 - 4919