Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries

被引:38
作者
Sun, Dong-Fei [1 ]
Wang, Zi-Juan [1 ]
Tian, Tian [1 ]
Yu, Xin [1 ]
Yu, Dan-Dan [1 ]
Zhou, Xiao-Zhong [1 ]
Ma, Guo-Fu [1 ]
Lei, Zi-Qiang [1 ]
机构
[1] Northwest Normal Univ, Sch Coll Chem & Chem Engn, Key Lab Ecofunct Polymer Mat, Key Lab Ecoenvironm Polymer Mat Gansu Prov,Minist, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen defects; V2O3; PEDOT; Electrochemical self-optimization; Aqueous zinc-ion batteries; HIGH-CAPACITY; CARBON;
D O I
10.1007/s12598-023-02434-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aqueous zinc-ion batteries (AZIBs) have attracted widespread attention due to the advantages of high safety and environmental friendliness. Although V2O3 is a promising cathode, the strong electrostatic interaction between Zn2+ and V2O3 crystal, and the sluggish reaction kinetics still limit their application in AZIBs. Herein, the oxygen defects rich V2O3 with conducive poly (3,4-ethylenedioxythiophene) (PEDOT) shell (V2O3-O-d@PEDOT) was fabricated for AZIBs by combining the sulfur-assisted thermal reduction and in-situ polymerization method. The introduced oxygen vacancies of V2O3-O-d@PEDOT weaken the electrostatic interaction between Zn2+ and the host material, improving the interfacial electron transport, while the PEDOT coating enhances the structural stability and conductivity of V2O3, thus accelerating the reaction kinetics. Based on the advantages, V2O3-O-d@PEDOT electrode delivers a reversible capacity of 495 mAh<middle dot>g(-1) at 0.1 A<middle dot>g(-1), good rate capability (189 mAh<middle dot>g(-1) at 8.0 A<middle dot>g(-1)), and an impressive cycling stability with 90.1% capacity retention over 1000 cycles at 8.0 A<middle dot>g(-1). The strategy may provide a path for exploiting the other materials for high performance AZIBs.
引用
收藏
页码:635 / 646
页数:12
相关论文
共 57 条
[51]   Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life [J].
Zhang, Ning ;
Dong, Yang ;
Jia, Ming ;
Bian, Xu ;
Wang, Yuanyuan ;
Qiu, Mande ;
Xu, Jianzhong ;
Liu, Yongchang ;
Jiao, Lifang ;
Cheng, Fangyi .
ACS ENERGY LETTERS, 2018, 3 (06) :1366-1372
[52]   Manganese-ions and polyaniline co-intercalation into vanadium oxide for stable zinc-ion batteries [J].
Zhang, Yan ;
Du, Yehong ;
Song, Binxin ;
Wang, Zhe ;
Wang, Xinyu ;
Wan, Fang ;
Ma, Xiangkun .
JOURNAL OF POWER SOURCES, 2022, 545
[53]   Oxygen Defects Engineering of VO2•xH2O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage [J].
Zhang, Zhengchunyu ;
Xi, Baojuan ;
Wang, Xiao ;
Ma, Xiaojian ;
Chen, Weihua ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
[54]   Oxygen Vacancies of Commercial V2O5 Induced by Mechanical Force to Enhance the Diffusion of Zinc Ions in Aqueous Zinc Battery [J].
Zhao, Danyang ;
Zhu, Qiancheng ;
Li, Xiaohui ;
Dun, Menghan ;
Wang, Yin ;
Huang, Xintang .
BATTERIES & SUPERCAPS, 2022, 5 (04)
[55]   Rapid Electrochemical Activation of V2O3@C Cathode for High-Performance Zinc-Ion Batteries in Water-in-Salt Electrolyte [J].
Zheng, Jun ;
Zhan, Chenyang ;
Zhang, Kai ;
Fu, Wenwu ;
Nie, Qiaojun ;
Zhang, Ming ;
Shen, Zhongrong .
CHEMSUSCHEM, 2022, 15 (08)
[56]   Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries [J].
Zhu, Kefu ;
Wei, Shiqiang ;
Shou, Hongwei ;
Shen, Feiran ;
Chen, Shuangming ;
Zhang, Pengjun ;
Wang, Changda ;
Cao, Yuyang ;
Guo, Xin ;
Luo, Mi ;
Zhang, Hongjun ;
Ye, Bangjiao ;
Wu, Xiaojun ;
He, Lunhua ;
Song, Li .
NATURE COMMUNICATIONS, 2021, 12 (01)
[57]   Challenges and strategies for ultrafast aqueous zinc-ion batteries [J].
Zhu, Qiao-Nan ;
Wang, Zhen-Ya ;
Wang, Jia-Wei ;
Liu, Xiao-Yu ;
Yang, Dan ;
Cheng, Li-Wei ;
Tang, Meng-Yao ;
Qin, Yu ;
Wang, Hua .
RARE METALS, 2021, 40 (02) :309-328